Learn More
Water treatment technologies are needed that can remove perchlorate from drinking water without introducing organic chemicals that stimulate bacterial growth in water distribution systems. Hydrogen is an ideal energy source for bacterial degradation of perchlorate as it leaves no organic residue and is sparingly soluble. We describe here the isolation of a(More)
A mesophilic unsaturated flow (trickle bed) reactor was designed and tested for H2 production via fermentation of glucose. The reactor consisted of a column packed with glass beads and inoculated with a pure culture (Clostridium acetobutylicum ATCC 824). A defined medium containing glucose was fed at a flow rate of 1.6 mL/min (0.096 L/h) into the capped(More)
Traditionally, studies in microbial genomics have focused on single-genomes from cultured species, thereby limiting their focus to the small percentage of species that can be cultured outside their natural environment. Fortunately, recent advances in high-throughput sequencing and computational analyses have ushered in the new field of metagenomics, which(More)
A single-chamber microbial fuel cell (MFC) was used to reduce 10 chemicals associated with odors by 99.76% (from 422 +/- 23 mug/ml) and three volatile organic acids (acetate, butyrate, and propionate) by >99%. The MFC produced a maximum of 228 mW/m(2) and removed 84% of the organic matter in 260 h. MFCs were therefore effective at both treatment and(More)
A cross-flow membrane was coupled to a chemostat to create an anaerobic membrane bioreactor (MBR) for biological hydrogen production. The reactor was fed glucose (10,000 mg/L) and inoculated with a soil inoculum heat-treated to kill non-spore-forming methanogens. Hydrogen gas was consistently produced at a concentration of 57-60% in the headspace under all(More)
Clostridium Selenomonas a b s t r a c t Bacterial community composition during steady-state, fermentative H 2 production was compared across a range of organic loading rates (OLRs) of 0.5–19 g COD l À1 h À1 in a 2-l continuous flow reactor at 30 C. The varied OLRs were achieved with glucose concentrations of 2.5–10 g l À1 and hydraulic retention times of(More)
Amorphous silicon nitride is a model system for a covalently bound amorphous solid with a low atomic mobility where reasonable values of self-diffusivities are still lacking. We used neutron reflectometry on isotope enriched Si3 14N4/Si3 15N4 multilayers to determine nitrogen self-diffusivities ranging from 10(-24) to 10(-21) m2/s between 950 and 1250(More)