Learn More
Chronic exercise training elicits positive adaptations in cardiac contractile function and ventricular dimension. The potential contribution of single myocyte morphological and functional adaptations to these global responses to training was determined in this study. Left ventricular cardiac myocytes were isolated from the hearts of sedentary control (Sed)(More)
To investigate the mechanism of intracellular Ca2+ ([Cai]) increase in human burst-forming unit-erythroid-derived erythroblasts by erythropoietin, we measured [Cai] with digital video imaging, cellular phosphoinositides with high performance liquid chromatography, and plasma membrane potential and currents with whole cell patch clamp. Chelation of(More)
An inward current responsible for hormone regulated Ca2+ entry has been identified in cultured rat hepatocytes using whole cell patch clamp. Addition of 20 nM vasopressin or of 100 microM ATP induced the inward current, which could be observed more clearly after blocking an outward K+ current. This large outward K+ current, which appeared after addition of(More)
In myocardial hypertrophy secondary to renovascular hypertension, the rate of intracellular Ca2+ concentration decline during relaxation in paced left ventricular (LV) myocytes isolated from hypertensive (Hyp) rats is much slower compared with that from normotensive (Sham) rats. By use of a novel liquid-crystal television-based optical-digital processor(More)
Various visualization methods were compared for quantitation of proteins by the dot-immunobinding assay. Comparisons were carried out using a multi-subunit protein, eukaryotic initiation factor 2, and monospecific antibodies directed against two of the factor's subunits. The protein was spotted onto nitrocellulose and the membranes were incubated with(More)
The inotropic responsiveness of isolated perfused rat hearts and single left ventricular (LV) myocytes to extracellular Ca2+ ([Ca2+]o) was examined 3 wk after ligation of left main coronary artery. Myocytes isolated from myocardial infarcted (MI) hearts were 10% longer. At [Ca2+]o of 1.1 mM, cell shortening as well as intracellular Ca2+ concentration(More)
Several functional and biochemical characteristics of hypertrophied hearts isolated from rats with renovascular hypertension provide indirect evidence that cellular Ca2+ dynamics during myocardial contraction-relaxation are altered. In this study, intracellular Ca2+ concentration ([Ca2+]i) dynamics were examined in paced left ventricular (LV) myocytes(More)
  • 1