M. A. Axelrod

Learn More
The timely and accurate detection of nuclear contraband is an extremely important problem of national security. The development of a prototype sequential Bayesian processor that incorporates the underlying physics of ¿-ray emissions and the measurement of photon energies and their interarrival times that offers a physics-based approach to attack this(More)
The detection of radioactive contraband is a critical problem is maintaining national security for any country. Photon emissions from threat materials challenge both detection and measurement technologies especially when concealed by various types of shielding complicating the transport physics significantly. This problem becomes especially important when(More)
Radionuclide emissions from nuclear contraband challenge both detection and measurement technologies to capture and record each event. The development of a sequential Bayesian processor incorporating both the physics of gamma-ray emissions and the measurement of photon energies offers a physics-based approach to attack this challenging problem. It is shown(More)
The detection of radioactive contraband is a critical problem in maintaining national security for any country. Emissions from threat materials challenge both detection and measurement technologies especially when concealed by various types of shielding complicating the transport physics significantly. The development of a model-based sequential Bayesian(More)
The detection of radioactive contraband is a critical problem in maintaining national security for any country. Gamma-ray emissions from threat materials challenge both detection and measurement technologies significantly. The development of a sequential, model-based Bayesian processor that captures both the underlying transport physics of gamma-ray(More)
  • 1