Müjdat Çetin

Learn More
We present a source localization method based on a sparse representation of sensor measurements with an overcomplete basis composed of samples from the array manifold. We enforce sparsity by imposing penalties based on the /spl lscr//sub 1/-norm. A number of recent theoretical results on sparsifying properties of /spl lscr//sub 1/ penalties justify this(More)
We develop a method for the formation of spotlight-mode synthetic aperture radar (SAR) images with enhanced features. The approach is based on a regularized reconstruction of the scattering field which combines a tomographic model of the SAR observation process with prior information regarding the nature of the features of interest. Compared to conventional(More)
In this paper, we present a new information-theoretic approach to image segmentation. We cast the segmentation problem as the maximization of the mutual information between the region labels and the image pixel intensities, subject to a constraint on the total length of the region boundaries. We assume that the probability densities associated with the(More)
We explore the application of a homotopy continuation-based method for sparse signal representation in overcomplete dictionaries. Our problem setup is based on the basis pursuit framework, which involves a convex optimization problem consisting of terms enforcing data fidelity and sparsity, balanced by a regularization parameter. Choosing a good(More)
In this paper, we present a novel information theoretic approach to image segmentation. We cast the segmentation problem as the maximization of the mutual information between the region labels and the image pixel intensities, subject to a constraint on the total length of the region boundaries. We assume that the probability densities associated with the(More)
| Remote sensing with radar is typically an ill-posed linear inverse problem: a scene is to be inferred from limited measurements of scattered electric fields. Parsimonious models provide a compressed representation of the unknown scene and offer a means for regularizing the inversion task. The emerging field of compressed sensing combines nonlinear(More)
When segmenting images of low quality or with missing data, statistical prior information about the shapes of the objects to be segmented can significantly aid the segmentation process. However, defining probability densities in the space of shapes is an open and challenging problem. In this paper, we propose a nonparametric shape prior model for image(More)
Having accurate left ventricle (LV) segmentations across a cardiac cycle provides useful quantitative (e.g. ejection fraction) and qualitative information for diagnosis of certain heart conditions. Existing LV segmentation techniques are founded mostly upon algorithms for segmenting static images. In order to exploit the dynamic structure of the heart in a(More)
We present a source localization method based upon a sparse representation of sensor measurements with an overcomplete basis composed of samples from the array manifold. We enforce sparsity by imposing an `1-norm penalty; this can also be viewed as an estimation problem with a Laplacian prior. Explicitly enforcing the sparsity of the representation is(More)