Mónica Venegas-Calerón

Learn More
The synthesis and accumulation of long chain polyunsaturated fatty acids such as eicosapentaenoic acid has previously been demonstrated in the seeds of transgenic plants. However, the obtained levels are relatively low, indicating the need for further studies and the better definition of the interplay between endogenous lipid synthesis and the non-native(More)
Enoyl-[acyl carrier protein]-reductases from sunflower. A major factor contributing to the amount of fatty acids in plant oils are the first steps of their synthesis. The intraplastidic fatty acid biosynthetic pathway in plants is catalysed by type II fatty acid synthase (FAS). The last step in each elongation cycle is carried out by the(More)
Acyl–acyl carrier protein (ACP) thioesterases are enzymes that control the termination of intraplastidial fatty acid synthesis by hydrolyzing the acyl–ACP complexes. Among the different thioesterase gene families found in plants, the FatA-type fulfills a fundamental role in the export of the C18 fatty acid moieties that will be used to synthesize most plant(More)
Ever since the recent completion of the peach genome, the focus of genetic research in this area has turned to the identification of genes related to important traits, such as fruit aroma volatiles. Of the over 100 volatile compounds described in peach, lactones most likely have the strongest effect on fruit aroma, while esters, terpenoids, and aldehydes(More)
The natural OLE-1 high-oleic castor mutant has been characterized, demonstrating that point mutations in the FAH12 gene are responsible for the high-oleic phenotype. The contribution of each mutation was evaluated by heterologous expression in yeast, and lipid studies in developing OLE-1 seeds provided new evidence of unusual fatty acids channeling into(More)
The substrate specificity of the acyl–acyl carrier protein (ACP) thioesterases significantly determines the type of fatty acids that are exported from plastids. Thus, designing acyl-ACP thioesterases with different substrate specificities or kinetic properties would be of interest for plant lipid biotechnology to produce oils enriched in specialty fatty(More)
Two sunflower hydroxyacyl-[acyl carrier protein] dehydratases evolved into two different isoenzymes showing distinctive expression levels and kinetics’ efficiencies. β-Hydroxyacyl-[acyl carrier protein (ACP)]-dehydratase (HAD) is a component of the type II fatty acid synthase complex involved in ‘de novo’ fatty acid biosynthesis in plants. This complex,(More)
The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific towards saturated acyl-ACPs when assayed with them. Acyl carrier proteins (ACPs) are small (~9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through(More)
The mitochondrial prohibitin complex, composed of two proteins, PHB-1 and PHB-2, is a context-dependent modulator of longevity. Specifically, prohibitin deficiency shortens the lifespan of otherwise wild type worms, while it dramatically extends the lifespan under compromised metabolic conditions. This extremely intriguingly phenotype has been linked to(More)
  • 1