Mélanie Marquis

Learn More
The FT-IR fingerprint of wheat endosperm arabinoxylan (AX) was investigated using a set of polysaccharides exhibiting variation of their degree of substitution and xylo-oligosaccharides comprising xylose units mono- or disubstituted by arabinose residues. Substitution of the xylose backbone by arabinose side units was more particularly studied in the(More)
Although cell wall remodeling is an essential feature of plant growth and development, the underlying molecular mechanisms are poorly understood. This work describes the characterization of Arabidopsis (Arabidopsis thaliana) plants with altered expression of ARAF1, a bifunctional alpha-L-arabinofuranosidase/beta-D-xylosidase (At3g10740) belonging to family(More)
At the junction of chemistry, physics and biology, digestion involves many processes. Studying the mechanisms in such a complex system is challenging because numerous interactions coexist. Even in an apparently simple system such as an emulsion, many physicochemical characteristics affect lipid digestion. Moreover, these characteristics are difficult to(More)
We describe a microfluidic approach for generating Janus microbeads from biopolymer hydrogels. A flow-focusing device was used to emulsify the coflow of aqueous solutions of one or two different biopolymers in an organic phase to synthesize homo or hetero Janus microbeads. Biopolymer gelation was initiated, in the chip, by diffusion-controlled ionic(More)
We demonstrated the generation of pectin hydrogel microparticles having complex shapes either by combining the phenomenon of gelation and water diffusion-induced self-assembly in microfluidic channels (on-chip) or by the deformation of the pregelled droplets outside the channels (off-chip) at a fluid-fluid interface. We proved that by tuning the mode of(More)
A promising technique for oil encapsulation in Ca-alginate capsules by inverse gelation was proposed by Abang et al. This method consists of emulsifying calcium chloride solution in oil and then adding it dropwise in an alginate solution to produce Ca-alginate capsules. Spherical capsules with diameters around 3 mm were produced by this technique, however(More)
Capillary flow-based approach such as microfluidic devices offer a number of advantages over conventional flow control technology because they ensure highly versatile geometry and can be used to produce monodisperse spherical and non-spherical polymeric microparticles. Based on the principle of a flow-focusing device to emulsify the coflow of aqueous(More)
Assembly of biopolymers into microgels is an elegant strategy for bioencapsulation with various potential biomedical applications. Such biocompatible and biodegradable microassemblies are developed not only to protect the encapsulated molecule but also to ensure its sustained local delivery. The present study describes the fabrication of microassemblies(More)
Alginate microgels are widely used as delivery systems in food, cosmetics, and pharmaceutical industries for encapsulation and sustained release of hydrophilic compounds and cells. However, the encapsulation of lipophilic molecules inside these microgels remains a great challenge because of the complex oil-core matrix required. The present study describes(More)
We used a droplet-based microfluidics technique to produce monodisperse responsive alginate-block-polyetheramine copolymer microgels. The polyetheramine group (PEA), corresponding to a propylene oxide /ethylene oxide ratio (PO/EO) of 29/6 (Jeffamine(®) M2005), was condensed, via the amine link, to alginates with various mannuronic/guluronic acids ratios and(More)