Learn More
Paragangliomas are neuroendocrine tumors frequently associated with mutations in RET, NF1, VHL, and succinate dehydrogenase (SDHx) genes. Methylome analysis of a large paraganglioma cohort identified three stable clusters, associated with distinct clinical features and mutational status. SDHx-related tumors displayed a hypermethylator phenotype, associated(More)
Pheochromocytomas and paragangliomas (PCCs/PGLs) are neural crest-derived tumours with a very strong genetic component. Here we report the first integrated genomic examination of a large collection of PCC/PGL. SNP array analysis reveals distinct copy-number patterns associated with genetic background. Whole-exome sequencing shows a low mutation rate of 0.3(More)
CONTEXT Pheochromocytomas (PCC) and paragangliomas (PGL) may be caused by a germline mutation in 12 different predisposing genes. We previously reported that immunohistochemistry is a useful approach to detect patients harboring SDHx mutations. SDHA immunostaining is negative in SDHA-mutated tumors only, while SDHB immunostaining is negative in samples(More)
Malignant pheochromocytoma (PCC) and paraganglioma (PGL) are mostly caused by germline mutations of SDHB, encoding a subunit of succinate dehydrogenase. Using whole-exome sequencing, we recently identified a mutation in the FH gene encoding fumarate hydratase, in a PCC with an 'SDH-like' molecular phenotype. Here, we investigated the role of FH in PCC/PGL(More)
CONTEXT HIF2A germline mutations were known to cause congenital polycythemia. Recently, HIF2A somatic mutations were found in several patients with polycythemia and paraganglioma, pheochromocytoma, or somatostatinoma, suggesting the occurrence of a de novo postzygotic HIF2A mutation that has not been demonstrated clearly. PATIENTS Patient 1 is a woman(More)
The tricarboxylic acid (TCA) cycle is a central metabolic pathway responsible for supplying reducing potential for oxidative phosphorylation and anabolic substrates for cell growth, repair and proliferation. As such it thought to be essential for cell proliferation and tissue homeostasis. However, since the initial report of an inactivating mutation in the(More)
Metastatic pheochromocytomas and paragangliomas (PPGL) are malignant neuroendocrine tumors frequently associated with germline mutations in the SDHB gene. SDHB-mutated PPGL display a hypermethylator phenotype associated with hallmarks of epithelial-to-mesenchymal transition (EMT). In the present study, we report the characterization of a unique model of(More)
  • 1