Learn More
Deep vein thrombosis and pulmonary embolism are major health problems associated with high mortality. Recently, DNA-based neutrophil extracellular traps (NETs) resulting from the release of decondensed chromatin, were found to be part of the thrombus scaffold and to promote coagulation. However, the significance of nuclear decondensation and NET generation(More)
Cancer-associated thrombosis often lacks a clear etiology. However, it is linked to a poor prognosis and represents the second-leading cause of death in cancer patients. Recent studies have shown that chromatin released into blood, through the generation of neutrophil extracellular traps (NETs), is procoagulant and prothrombotic. Using a murine model of(More)
The majority of peripheral serotonin is stored in platelets, which secrete it on activation. Serotonin releases Weibel-Palade bodies (WPBs) and we asked whether absence of platelet serotonin affects neutrophil recruitment in inflammatory responses. Tryptophan hydroxylase (Tph)1–deficient mice, lacking non-neuronal serotonin, showed mild leukocytosis(More)
Platelets are crucial regulators of tumor vascular homeostasis and continuously prevent tumor hemorrhage through secretion of their granules. However, the reason for tumor bleeding in the absence of platelets remains unknown. Tumors are associated with inflammation, a cause of hemorrhage in thrombocytopenia. Here, we investigated the role of the inflamed(More)
Wound healing is impaired in diabetes, resulting in significant morbidity and mortality. Neutrophils are the main leukocytes involved in the early phase of healing. As part of their anti-microbial defense, neutrophils form extracellular traps (NETs) by releasing decondensed chromatin lined with cytotoxic proteins. NETs, however, can also induce tissue(More)
Neutrophil extracellular traps (NETs), consisting of nuclear DNA with histones and microbicidal proteins, are expelled from activated neutrophils during sepsis. NETs were shown to trap microbes, but they also fuel cardiovascular, thrombotic, and autoimmune disease. The role of NETs in sepsis, particularly the balance between their antimicrobial and(More)
INTRODUCTION Large elevations of high sensitive Troponin T (hsTnT) in ischemic stroke patients is associated with a poor outcome. In a pilot study we found a high prevalence of malignancies among these patients. Since neutrophil extracellular traps (NETs) have been linked to cancer-associated thrombosis, we hypothesized that the concomitant cerebral and(More)
Recombinant tissue plasminogen activator (r-tPA) is the drug of choice for thrombolysis, but it is associated with a significant risk of bleeding and is not always successful. By cleaving von Willebrand factor (VWF), the metalloprotease ADAMTS13 (a disintegrin-like and metalloprotease with thrombospondin type I repeats-13) down-regulates thrombus formation(More)
Neutrophils have long been known as innate immune cells that phagocytose and kill pathogens and mount inflammatory responses protecting the host from infection. In the past decades, new aspects of neutrophils have emerged unmasking their importance not only in inflammation but also in many pathological conditions including thrombosis and cancer. The 2004(More)
Cancers prime neutrophils to release extracellular DNA traps through the systemic release of granulocyte colony-stimulating factor (G-CSF). We recently showed that these circulating neutrophil extracellular traps (NETs) promote the establishment of a pro-thrombotic state. The role of NETs in cancer biology and tumor progression may prove much more than an(More)