Learn More
Standard cell culture systems impose environmental oxygen (O(2)) levels of 20%, whereas actual tissue O(2) levels in both developing and adult brain are an order of magnitude lower. To address whether proliferation and differentiation of CNS precursors in vitro are influenced by the O(2) environment, we analyzed embryonic day 12 rat mesencephalic precursor(More)
We report on generation of dopamine neurons from long-term cultures of human fetal mesencephalic precursor cells. These CNS precursor cells were successfully expanded in vitro using the mitogens epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). Incubation of these cultures in 3% atmospheric oxygen resulted in higher cellular yields than(More)
Highly organized, universal structures underlying biological and technological networks mediate effective trade-offs among efficiency, robustness and evolvability, with predictable fragilities that can be used to understand disease pathogenesis. The aims of this article are to describe the features of one common organizational architecture in biology, the(More)
Isolated neural crest stem cells (NCSCs) differentiate to autonomic neurons in response to bone morphogenetic protein 2 (BMP2) in clonal cultures, but these neurons do not express sympathoadrenal (SA) lineage markers. Whether this reflects a developmental restriction in NCSCs or simply inappropriate culture conditions was not clear. We tested the growth and(More)
Inflammation is a complex, multi-scale biologic response to stress that is also required for repair and regeneration after injury. Despite the repository of detailed data about the cellular and molecular processes involved in inflammation, including some understanding of its pathophysiology, little progress has been made in treating the severe inflammatory(More)
This paper aims to bridge progress in neuroscience involving sophisticated quantitative analysis of behavior, including the use of robust control, with other relevant conceptual and theoretical frameworks from systems engineering, systems biology, and mathematics. Familiar and accessible case studies are used to illustrate concepts of robustness,(More)
Complex engineered and biological systems share protocol-based architectures that make them robust and evolvable, but with hidden fragilities to rare perturbations. Chaos, fractals, random graphs and power laws inspire a popular view of complexity in which behaviours that are typically unpredictable and fragile 'emerge' from simple interconnections among(More)
Inflammation is a normal, robust physiological process. It can also be viewed as a complex system that senses and attempts to resolve homeostatic perturbations initiated from within the body (for example, in autoimmune disease) or from the outside (for example, in infections). Virtually all acute and chronic diseases are either driven or modulated by(More)
  • R Tanaka, M Csete, J Doyle
  • 2005
High-level, mathematically precise descriptions of the global organisation of complex metabolic networks are necessary for understanding the global structure of metabolic networks, the interpretation and integration of large amounts of biologic data (sequences, various -omics) and ultimately for rational design of therapies for disease processes. Metabolic(More)