Mária de Fátima Grossi-de-Sá

Learn More
Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis.(More)
Insect pests and pathogens (fungi, bacteria and viruses) are responsible for severe crop losses. Insects feed directly on the plant tissues, while the pathogens lead to damage or death of the plant. Plants have evolved a certain degree of resistance through the production of defence compounds, which may be aproteic, e.g. antibiotics, alkaloids, terpenes,(More)
Accuracy in quantitative real-time polymerase chain reaction (qPCR) requires the use of stable endogenous controls. Normalization with multiple reference genes is the gold standard, but their identification is a laborious task, especially in species with limited sequence information. Coffee (Coffea ssp.) is an important agricultural commodity and, due to(More)
To meet the demands for food of the expanding world population, there is need of new ways for protecting plant crops against predators and pathogens while avoiding the use of environmentally aggressive chemicals. A milestone in this field was the introduction into crop plants of genes expressing Bacillus thuringiensis entomotoxic proteins. In spite of the(More)
Cotton (Gossypium hirsutum L.) is an important agricultural commodity, which is attacked by several pests such as the cotton boll weevil Anthonomus grandis. Adult A. grandis feed on fruits and leaf petioles, reducing drastically the crop production. The predominance of boll weevil digestive serine proteinases has motivated inhibitor screenings in order to(More)
Sugarcane giant borer (Telchin licus licus) is a serious sugarcane pest in Americas whose endophytic lifestyle hampers effective chemical and biological controls. Therefore, development of alternative control methods is extremely important. Envisaging development of transgenic plants resistant to this pest, we investigated the effect of the Bacillus(More)
BACKGROUND The cotton boll weevil (Anthonomus grandis) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents(More)
Storage proteins perform essential roles in plant survival, acting as molecular reserves important for plant growth and maintenance, as well as being involved in defense mechanisms by virtue of their properties as insecticidal and antimicrobial proteins. These proteins accumulate in storage vacuoles inside plant cells, and, in response to determined(More)
Ethylene is a phytohormone known for inducing a triple response in seedlings, leaf abscission and other responses to various stresses. Several studies in model plants have evaluated the importance of this hormone in crosstalk signaling with different metabolic pathways, in addition to responses to biotic stresses. However, the mechanism of action in plants(More)
Cotton is a major fibre crop grown worldwide that suffers extensive damage from chewing insects, including the cotton boll weevil larvae (Anthonomus grandis). Transcriptome analysis was performed to understand the molecular interactions between Gossypium hirsutum L. and cotton boll weevil larvae. The Illumina HiSeq 2000 platform was used to sequence the(More)