Márcia Almeida Liz

Learn More
Transthyretin (TTR) is a plasma homotetrameric protein that acts physiologically as a transporter of thyroxine (T(4)) and retinol, in the latter case through binding to retinol-binding protein (RBP). A fraction of plasma TTR is carried in high density lipoproteins by binding to apolipoprotein AI (apoA-I). We further investigated the nature of the TTR-apoA-I(More)
A fraction of plasma transthyretin (TTR) circulates in HDL through binding to apolipoprotein A-I (apoA-I). Moreover, TTR is able to cleave the C terminus of lipid-free apoA-I. In this study, we addressed the relevance of apoA-I cleavage by TTR in lipoprotein metabolism and in the formation of apoA-I amyloid fibrils. We determined that TTR may also cleave(More)
In the adult central nervous system, axonal regeneration is abortive. Regulators of microtubule dynamics have emerged as attractive targets to promote axonal growth following injury as microtubule organization is pivotal for growth cone formation. In this study, we used conditioned neurons with high regenerative capacity to further dissect cytoskeletal(More)
Cytoskeleton defects, including alterations in microtubule stability, in axonal transport as well as in actin dynamics, have been characterized in several unrelated neurodegenerative conditions. These observations suggest that defects of cytoskeleton organization may be a common feature contributing to neurodegeneration. In line with this hypothesis, drugs(More)
Proteases are deeply involved in physiology and pathology. For most, the mechanism is well defined but several fail to display typical protease features (as is the case of the four proteases contained in fibronectin, the inhibitor-resistant mesotrypsin and the proteosomal deubiquitinating enzyme) or have unclear physiological function (such as calpain-like(More)
In Krabbe's disease, a demyelinating disorder, add-on strategies targeting the peripheral nervous system (PNS) are needed, as it is not corrected by bone-marrow (BM) transplantation. To circumvent this limitation of BM transplantation, we assessed whether i.v. delivery of immortalized EGFP(+) BM-derived murine mesenchymal stromal cells (BM-MSC(TERT-EGFP) )(More)
Transthyretin (TTR) is a plasma and cerebrospinal fluid protein mainly recognized as the transporter of thyroxine (T(4)) and retinol. Mutated TTR leads to familial amyloid polyneuropathy, a neurodegenerative disorder characterized by TTR amyloid deposition particularly in peripheral nerves. Beside its transport activities, TTR is a cryptic protease and(More)
Accumulating evidence has contributed to a novel view in bone biology: bone remodeling, specifically osteoblast differentiation, is under the tight control of the central and peripheral nervous systems. Among other players in this neuro-osteogenic network, the neuropeptide Y (NPY) system has attracted particular attention. At the central nervous system(More)
To better understand the role of neuropeptide Y (NPY) in bone homeostasis, as its function in the regulation of bone mass is unclear, we assessed its expression in this tissue. By immunohistochemistry, we demonstrated, both at embryonic stages and in the adult, that NPY is synthesized by osteoblasts, osteocytes, and chondrocytes. Moreover, peptidylglycine(More)
Besides functioning as the plasma transporter of retinol and thyroxine, TTR (transthyretin) is a protease, cleaving apoA-I (apolipoprotein A-I) after a phenylalanine residue. In the present study, we further investigated TTR substrate specificity. By using both P-diverse libraries and a library of phosphonate inhibitors, a TTR preference for a lysine(More)