Learn More
The microcirculation is the site of gas and nutrient exchange. Control of central or local signals acting on the myocytes, pericytes and endothelial cells within it, is essential for health. Due to technical problems of accessibility, the mechanisms controlling Ca2+ signalling and contractility of myocytes and pericytes in different sections of(More)
Mesenchymal stem cells (MSCs) play important roles in tissue repair and cancer progression. Our recent work suggests that some mesenchymal cells, notably myofibroblasts exhibit regulated exocytosis resembling that seen in neuroendocrine cells. We now report that MSCs also exhibit regulated exocytosis. Both a G-protein coupled receptor agonist, chemerin, and(More)
In ureteric microvessels the antagonistic relationship between Ca(2+) signalling in endothelium and Ca(2+) oscillations in myocytes and pericytes of arterioles and venules involves nitric oxide (NO), but the underlying mechanisms are not well understood. In the present study we investigated the effects of carbachol and NO donor SNAP on Ca(2+) signalling and(More)
Transient receptor potential melastatin 8 (TRPM8) is the principal cold and menthol receptor channel. Characterized primarily for its cold-sensing role in sensory neurons, it is expressed and functional in several nonneuronal tissues, including vasculature. We previously demonstrated that menthol causes variable mechanical responses (vasoconstriction,(More)
In the myometrium SR Ca(2+) depletion promotes an increase in force but unlike several other smooth muscles, there is no Ca(2+) sparks-STOCs coupling mechanism to explain this. Given the importance of the control of contractility for successful parturition, we have examined, in pregnant rat myometrium, the effects of SR Ca(2+)-ATPase (SERCA) inhibition on(More)
  • 1