Learn More
Trigeminal somatosensory receptors have not been characterised in teleost fish and studies in elasmobranchs have failed to identify nociceptors. The present study examined the trigeminal nerve of a teleost fish, the rainbow trout (Oncorhynchus mykiss) to determine what types of somatosensory receptors were present on the head of the trout specifically(More)
This study aimed to assess fear responses to a novel object while experiencing a noxious event to determine whether nociception or fear will dominate attention in a fish in novel object testing paradigm. This experimentally tractable animal model was used to investigate (1) the degree of neophobia to a novel object while experiencing noxious stimulation,(More)
Nociception is the detection of a noxious, tissue damaging stimulus and is sometimes accompanied by a reflex response such as withdrawal. Pain perception, as distinct from nociception, has been demonstrated in birds and mammals but has not been systematically studied in lower vertebrates. We assessed whether a fish possessed cutaneous nociceptors capable of(More)
Recent studies have demonstrated that teleost fish possess nociceptors that detect potentially painful stimuli and that the physiological properties of these fibres are markedly similar to those found in mammals. This finding led to suggestions of possible pain perception in fish, contrary to the view that the sensory response in these animals is limited to(More)
The trigeminal nerve in the rainbow trout, Oncorhynchus mykiss, was examined for the presence of A-delta and C fibres. Sections of the three branches of the trigeminal nerve were found to comprise a range of fibre types including A-delta and C fibres. The size range of the cell bodies of the trigeminal ganglion reflected the fibre range since they(More)
This study examined stimulus-response properties of somatosensory receptors on the head of rainbow trout, Oncorhynchus mykiss, using extracellular recording from single cells in the trigeminal ganglion. Of 121 receptors recorded from 39 fish, 17 were polymodal nociceptors, 22 were mechanothermal nociceptors, 18 were mechanochemical receptors, 33 were fast(More)
Recent evidence has shown that fish display aversive behavioral and physiological reactions and a suspension of normal behavior in response to noxious stimuli that cause pain in other animals and humans. In addition to these behavioral responses, scientists have identified a peripheral nociceptive system and recorded specific changes in the brain activity(More)
Bold, risk-taking animals have previously been putatively linked with a proactive stress coping style whereas it is suggested shyer, risk-averse animals exhibit a reactive coping style. The aim of this study was to investigate whether differences in the expression of bold-type behaviour were evident within and between two lines of rainbow trout,(More)
Nociception is an important sensory system of major fundamental and clinical relevance. The nociceptive system of higher vertebrates is well studied with a wealth of information about nociceptor properties, involvement of the central nervous system and the in vivo responses to a noxious experience are already characterised. However, relatively little is(More)