Lynne M. Christianson

Learn More
Sixty-seven authentic isolates, representing six species from Fusarium section Fusarium (= section Discolor) were subjected to random amplified polymorphic DNA (RAPD) analysis and polymerase chain reaction using species-specific primers. Remarkably uniform RAPD banding patterns were obtained intraspecifically, irrespective of the geographical origin of the(More)
The lack of genomic resources can present challenges for studies of non-model organisms. Transcriptome sequencing offers an attractive method to gather information about genes and gene expression without the need for a reference genome. However, it is unclear what sequencing depth is adequate to assemble the transcriptome de novo for these purposes. We(More)
Proteorhodopsin (PR) is a retinal-binding bacterial integral membrane protein that functions as a light-driven proton pump. The gene encoding this photoprotein was originally discovered on a large genome fragment derived from an uncultured marine gamma-proteobacterium of the SAR86 group. Subsequently, many variants of the PR gene have been detected in(More)
The trichodiene synthase (tri5) gene of Fusarium venenatum was cloned from a genomic library. Vectors were created in which the tri5 coding sequence was replaced with the Neurospora crassa nitrate reductase (nit3) gene and with the Aspergillus nidulans acetamidase (amdS) gene flanked by direct repeats. The first vector was utilized to transform a nitrate(More)
Genes for the family of green-fluorescent proteins (GFPs) have been found in more than 100 species of animals, with some species containing six or more copies producing a variety of colours. Thus far, however, these species have all been within three phyla: Cnidaria, Arthropoda and Chordata. We have discovered GFP-type fluorescent proteins in the phylum(More)
Color morphs of the temperate, nonsymbiotic corallimorpharian Corynactis californica show variation in pigment pattern and coloring. We collected seven distinct color morphs of C. californica from subtidal locations in Monterey Bay, California, and found that tissue– and color–morph-specific expression of at least six different genes is responsible for this(More)
The biosynthesis of the luciferin coelenterazine has remained a mystery for decades. While not all organisms that use coelenterazine appear to make it themselves, it is thought that ctenophores are a likely producer. Here we analyze the transcriptome data of 24 species of ctenophores, two of which have published genomes. The natural precursors of(More)
Fluorescent proteins are optically active proteins found across many clades in metazoans. A fluorescent protein was recently identified in a ctenophore, but this has been suggested to derive from a cnidarian, raising again the question of origins of this group of proteins. Through analysis of transcriptome data from 30 ctenophores, we identified a member of(More)
The squid Sthenoteuthis oualaniensis, formerly Symplectoteuthis oualaniensis, generates light using the luciferin coelenterazine and a unique enzyme, symplectin. Genetic information is limited for bioluminescent cephalopod species, so many proteins, including symplectin, occur in public databases only as sequence isolates with few identifiable homologs. As(More)
  • 1