Lynne M . Angerer

Learn More
Asymmetric RNA probes, which contain only the mRNA coding strand, provide a large increase in hybridization efficiency in situ over that observed with either symmetric (both strands represented) RNA or DNA probes. Asymmetric RNA probes are synthesized in vitro by transcription from recombinants formed between sequences encoding sea urchin mRNAs and the(More)
The sequencing of the Strongylocentrotus purpuratus genome provides a unique opportunity to investigate the function and evolution of neural genes. The neurobiology of sea urchins is of particular interest because they have a close phylogenetic relationship with chordates, yet a distinctive pentaradiate body plan and unusual neural organization. Orthologues(More)
To examine whether a BMP signaling pathway functions in specification of cell fates in sea urchin embryos, we have cloned sea urchin BMP2/4, analyzed its expression in time and space in developing embryos and assayed the developmental consequences of changing its concentration through mRNA injection experiments. These studies show that BMP4 mRNAs accumulate(More)
We have identified a single homolog of goosecoid, SpGsc, that regulates cell fates along both the animal-vegetal and oral-aboral axes of sea urchin embryos. SpGsc mRNA is expressed briefly in presumptive mesenchyme cells of the approximately 200-cell blastula and, beginning at about the same time, accumulates in the presumptive oral ectoderm through pluteus(More)
The primary (animal-vegetal) (AV) and secondary (oral-aboral) (OA) axes of sea urchin embryos are established by distinct regulatory pathways. However, because experimental perturbations of AV patterning also invariably disrupt OA patterning and radialize the embryo, these two axes must be mechanistically linked. Here we show that FoxQ2, which is(More)
Two major signaling centers have been shown to control patterning of sea urchin embryos. Canonical Wnt signaling in vegetal blastomeres and Nodal signaling in presumptive oral ectoderm are necessary and sufficient to initiate patterning along the primary and secondary axes, respectively. Here we define and characterize a third patterning center, the animal(More)
We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with(More)
Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently(More)
Orthodenticle-related (Otx) proteins are a highly conserved class of homeobox-containing transcription factors found in a wide range of organisms. They function in numerous developmental events, most prominently, anterior head patterning in insects and vertebrates. In the sea urchin, Strongylocentrotus purpuratus, an orthodenticle-related protein called(More)