Lynley V. Bradnam

Learn More
Cathodal transcranial direct current stimulation (c-tDCS) can reduce excitability of neurons in primary motor cortex (M1) and may facilitate motor recovery after stroke. However, little is known about the neurophysiological effects of tDCS on proximal upper limb function. We hypothesized that suppression of contralesional M1 (cM1) excitability would produce(More)
In humans the two cerebral hemispheres have essential roles in controlling the upper limb. The purpose of this article is to draw attention to the potential importance of ipsilateral descending pathways for functional recovery after stroke, and the use of non-invasive brain stimulation (NBS) protocols of the contralesional primary motor cortex (M1).(More)
Proximal upper limb muscles are represented bilaterally in primary motor cortex. Goal-directed upper limb movement requires precise control of proximal and distal agonist and antagonist muscles. Failure to suppress antagonist muscles can lead to abnormal movement patterns, such as those commonly experienced in the proximal upper limb after stroke. We(More)
The cerebellum controls descending motor commands by outputs to primary motor cortex (M1) and the brainstem in response to sensory feedback. The cerebellum may also modulate afferent input en route to M1 and the brainstem. The objective of this study is to determine if anodal transcranial direct current stimulation (tDCS) to the cerebellum influences(More)
There is increasing evidence that the cerebellum has a role in the pathophysiology of primary focal hand dystonia and might provide an intervention target for non-invasive brain stimulation to improve function of the affected hand. The primary objective of this study was to determine if cerebellar transcranial direct current stimulation (tDCS) improves(More)
This study investigated whether cathodal transcranial direct current stimulation (c-tDCS) of left primary motor cortex (M1) modulates excitability of ipsilateral propriospinal premotoneurons (PNs) in healthy humans. Transcranial magnetic stimulation (TMS) of the right motor cortex was used to obtain motor evoked potentials (MEPs) from the left biceps(More)
This study investigated whether repetitive transcranial magnetic stimulation (TMS) delivered as continuous theta burst stimulation (cTBS) to left M1 degraded selective muscle activation in the contralateral and ipsilateral upper limb in healthy participants. Contralateral motor-evoked potentials (cMEPs) were elicited in left and right biceps brachii (BB)(More)
The slump test assesses the contribution of neural tissue to the referred symptoms associated with spinal pain and musculo-skeletal injuries of the lower limb. The limitation to full range of movement in performing this test has, in the past, been attributed to a mechanical restriction in mobility of neural tissue. Recent literature suggests that the(More)
The stability of the M-wave is an important component of experimental H-reflex methodology. Despite this importance, there is inconsistency in H-reflex literature on the most valid method of M-wave stability analysis. Further, there is currently no specific method for establishing the stability of an M-wave recruitment curve across various trials within an(More)