Learn More
The unique double fertilisation mechanism in flowering plants depends upon a pair of functional sperm cells. During male gametogenesis, each haploid microspore undergoes an asymmetric division to produce a large, non-germline vegetative cell and a single germ cell that divides once to produce the sperm cell pair. Despite the importance of sperm cells in(More)
Flowering plants possess a unique reproductive strategy, involving double fertilization by twin sperm cells. Unlike animal germ lines, the male germ cell lineage in plants only forms after meiosis and involves asymmetric division of haploid microspores, to produce a large, non-germline vegetative cell and a germ cell that undergoes one further division to(More)
Balanced maternal and paternal genome contributions are a requirement for successful seed development. Unbalanced contributions often cause seed abortion, a phenomenon that has been termed "triploid block." Misregulation of imprinted regulatory genes has been proposed to be the underlying cause for abnormalities in growth and structure of the endosperm in(More)
Polyploids, organisms with more than two sets of chromosomes, are widespread in flowering plants, including many important crop species. Increases in ploidy level are believed to arise commonly through the production of gametes that have not had their ploidy level reduced during meiosis. Although there have been cytological descriptions of unreduced gamete(More)
Porphyromonas gingivalis is a gram-negative, anaerobic coccobacillus that has been implicated as a major etiological agent in the development of chronic periodontitis. In this paper, we report the characterization of a protein, IhtB (iron heme transport; formerly designated Pga30), that is an outer membrane hemin-binding protein potentially involved in iron(More)
Porphyromonas gingivalis is an asaccharolytic, gram-negative bacterium that relies on the fermentation of amino acids for metabolic energy. When grown in continuous culture in complex medium containing 4 mM (each) free serine, threonine, and arginine, P. gingivalis assimilated mainly glutamate/glutamine, serine, threonine, aspartate/asparagine, and leucine(More)
  • 1