Learn More
We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA(More)
Malignant astrocytic gliomas such as glioblastoma are the most common and lethal intracranial tumors. These cancers exhibit a relentless malignant progression characterized by widespread invasion throughout the brain, resistance to traditional and newer targeted therapeutic approaches, destruction of normal brain tissue, and certain death. The recent(More)
Here we describe the comprehensive gene expression profiles of each cell type composing normal breast tissue and in situ and invasive breast carcinomas using serial analysis of gene expression. Based on these data, we determined that extensive gene expression changes occur in all cell types during cancer progression and that a significant fraction of(More)
All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first(More)
Prostate cancer is the second most common cause of male cancer deaths in the United States. However, the full range of prostate cancer genomic alterations is incompletely characterized. Here we present the complete sequence of seven primary human prostate cancers and their paired normal counterparts. Several tumours contained complex chains of balanced(More)
Despite recent insights into melanoma genetics, systematic surveys for driver mutations are challenged by an abundance of passenger mutations caused by carcinogenic UV light exposure. We developed a permutation-based framework to address this challenge, employing mutation data from intronic sequences to control for passenger mutational load on a per gene(More)
Tumor maintenance relies on continued activity of driver oncogenes, although their rate-limiting role is highly context dependent. Oncogenic Kras mutation is the signature event in pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible Kras(G12D)-driven PDAC mouse model establishes that advanced PDAC remains(More)
We have used nuclear transplantation to test whether the reprogramming activity of oocytes can reestablish developmental pluripotency of malignant cancer cells. We show here that the nuclei of leukemia, lymphoma, and breast cancer cells could support normal preimplantation development to the blastocyst stage but failed to produce embryonic stem (ES) cells.(More)
Pancreatic ductal adenocarcinoma (PDAC) is associated with marked fibrosis and stromal myofibroblasts, but their functional contribution remains unknown. Transgenic mice with the ability to delete αSMA(+) myofibroblasts in pancreatic cancer were generated. Depletion starting at either noninvasive precursor (pancreatic intraepithelial neoplasia) or the PDAC(More)
The cell cycle inhibitor p16INK4a is inactivated in many human tumors and in families with hereditary melanoma and pancreatic cancer. Tumor-associated alterations in the INK4a locus may also affect the overlapping gene encoding p19ARF and the adjacent gene encoding p15I1NK4b, both negative regulators of cell proliferation. We report the phenotype of mice(More)