Learn More
Current evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on(More)
There is substantial evidence of climate-related shifts to the timing of avian migration. Although spring arrival has generally advanced, variable species responses and geographical biases in data collection make it difficult to generalise patterns. We advance previous studies by using novel multivariate statistical techniques to explore complex(More)
Trends in extreme daily temperature and rainfall have been analysed from 1961 to 1998 for Southeast Asia and the South Pacific. This 38-year period was chosen to optimize data availability across the region. Using high-quality data from 91 stations in 15 countries, significant increases were detected in the annual number of hot days and warm nights, with(More)
Riparian ecosystems in the 21st century are likely to play a critical role in determining the vulnerability of natural and human systems to climate change, and in influencing the capacity of these systems to adapt. Some authors have suggested that riparian ecosystems are particularly vulnerable to climate change impacts due to their high levels of exposure(More)
Rapid changes in global climate are likely to alter species assemblages and environmental characteristics resulting in novel ecosystems. The ability to predict characteristics of future ecosystems is crucial for environmental planning and the development of effective climate change adaptation strategies. This paper presents an approach for envisioning novel(More)
Adaptation options in response to climate impact scenarios for marine mammals and seabirds were developed based on the IPCC vulnerability framework. Under this framework, vulnerability to the physical effects of climate change can be reduced by adaptation options that reduce exposure of individuals, reduce the sensitivity of individuals, and increase the(More)