Lyle E. Levine

Learn More
The distribution of elastic strains (and thus stresses) at the submicrometre length scale within deformed metal single crystals has remarkably broad implications for our understanding of important physical phenomena. These include the evolution of the complex dislocation structures that govern mechanical behaviour within individual grains, the transport of(More)
OBJECTIVE To investigate the complex structural and dynamical conversion process of the amorphous-calcium-phosphate (ACP)-to-apatite transition in ACP based dental composite materials. METHODS Composite disks were prepared using zirconia hybridized ACP fillers (0.4 mass fraction) and photo-activated Bis-GMA/TEGDMA resin (0.6 mass fraction). We performed(More)
We present an experimental study of the structural and dynamical properties of concentrated suspensions of different sized polystyrene microspheres dispersed in glycerol for volume fraction concentrations between 10% and 20%. The static structure, probed with ultrasmall-angle X-ray scattering, shows a behavior very similar to that of hard spheres. The(More)
Experimental conductivity measurements made during highly stable tensile deformation of Au nanowires show a rich variety of behaviors, including noninteger quantum conductance plateaus, transitions, and slopes. Using tight binding conductance calculations on simulated nanowires previously deformed using density functional theory, we demonstrate that all of(More)
The local structural changes in amorphous calcium phosphate (ACP)-based dental composites were studied under isothermal conditions using both static, bulk measurement techniques and a recently developed methodology based on combined ultra-small angle X-ray scattering-X-ray photon correlation spectroscopy (USAXS-XPCS), which permits a dynamic approach. While(More)
We present an experimental study of the structural and dynamical properties of bimodal, micrometer-sized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular-weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXS-based X-ray photon correlation spectroscopy. We fixed the(More)
We describe an innovative design for an in-plane measurement technique that subjects thin sheet metal specimens to bidirectional loading. The goal of this measurement is to provide the critical performance data necessary to validate complex predictions of the work hardening behavior during reversed uniaxial deformation. In this approach, all of the(More)
The mechanical properties and conductance of contaminated and pure silver nanowires were studied using density functional theory (DFT) calculations. Several nanowires containing O2 on their surfaces were elongated along two different directions. All of the NWs thinned down to single atom chains. In most simulations, the breaking force was not affected by(More)
We report the characterization of a unique metallic glass that, during rapid cooling of an Al-Fe-Si melt, forms by nucleation, followed by growth normal to a moving interface between the solid and melt with partitioning of the chemical elements. We determine experimentally that this is not a polycrystalline composite with nanometer-sized grains, and(More)