Lyle Chamberlain

Learn More
Safe autonomous flight is essential for widespread acceptance of aircraft that must fly close to the ground. We have developed a methodology of collision avoidance that can be used in three dimensions in much the same way as autonomous ground vehicles that navigate over unexplored terrain. Safe navigation is accomplished by a combination of online(More)
Safe autonomous flight is essential for widespread acceptance of aircraft that must fly close to the ground. We have developed a method of collision avoidance that can be used in three dimensions in much the same way as autonomous ground vehicles that navigate over unexplored terrain. Safe navigation is accomplished by a combination of online environmental(More)
Helicopters are valuable since they can land at unprepared sites; however, current unmanned helicopters are unable to select or validate landing zones (LZs) and approach paths. For operation in unknown terrain it is necessary to assess the safety of a LZ. In this paper, we describe a lidar-based perception system that enables a full-scale autonomous(More)
Currently deployed unmanned rotorcraft rely on carefully preplanned missions and operate from prepared sites and thus avoid the need to perceive and react to the environment. Here we consider the problems of finding suitable but previously unmapped landing sites given general coordinates of the goal and planning collision free trajectories in real time to(More)
Peripheral nerve regeneration was studied across a tubulated 10-mm gap in the rat sciatic nerve using histomorphometry and electrophysiological measurements of A-fiber, B-fiber, and C-fiber peaks of the evoked action potentials. Tubes fabricated from large-pore collagen (max. pore diameter, 22 nm), small-pore collagen (max. pore diameter, 4 nm), and(More)
In this paper we present a perception and autonomy package that for the first time allows a full-scale unmanned helicopter (the Boeing Unmanned Little Bird) to automatically fly through unmapped, obstacle-laden terrain, find a landing zone, and perform a safe landing near a casualty, all with no human control or input. The system also demonstrates the(More)
Injuries to peripheral nerves innervating a limb cause paralysis, and can necessitate amputation. The inability of the nerves to regenerate spontaneously and the limitations of autograft procedures led to the development of treatments involving insertion of the nerve ends into prosthetic tubular devices. Previous work showed that 'entubulation' of the nerve(More)
The presence of contractile cells, their organization around regenerating nerve trunks, and the hypothetical effect of these organized structures on the extent of regeneration across a tubulated 10-mm gap in the rat sciatic nerve were investigated. Collagen and silicone tubes were implanted both empty and filled with a collagen-glycosaminoglycan (GAG)(More)
The objectives of this study were to evaluate the regenerated axon structure at near-terminal locations in the peroneal and tibial branches 1 year following implantation of several tubular devices in a 10-mm gap in the adult rat sciatic nerve and to determine the extent of recovery of selected sensory and motor functions. The devices were collagen and(More)
Rivers with heavy vegetation are hard to map from the air. Here we consider the task of mapping their course and the vegetation along the shores with the specific intent of determining river width and canopy height. A complication in such riverine environments is that only intermittent GPS may be available depending on the thickness of the surrounding(More)