Lydie C. Flasse

Learn More
The transcription factor neurogenin 3 (Neurog3 or Ngn3) controls islet cell fate specification in multipotent pancreatic progenitor cells in the mouse embryo. However, our knowledge of the genetic programs implemented by Ngn3, which control generic and islet subtype-specific properties, is still fragmentary. Gene expression profiling in isolated(More)
In mice, the Nkx6 genes are crucial to alpha- and beta-cell differentiation, but the molecular mechanisms by which they regulate pancreatic subtype specification remain elusive. Here it is shown that in zebrafish, nkx6.1 and nkx6.2 are co-expressed at early stages in the first pancreatic endocrine progenitors, but that their expression domains gradually(More)
NEUROG3 is a key regulator of pancreatic endocrine cell differentiation in mouse, essential for the generation of all mature hormone producing cells. It is repressed by Notch signaling that prevents pancreatic cell differentiation by maintaining precursors in an undifferentiated state. We show that, in zebrafish, neurog3 is not expressed in the pancreas and(More)
In contrast to mammals, the zebrafish has the remarkable capacity to regenerate its pancreatic beta cells very efficiently. Understanding the mechanisms of regeneration in the zebrafish and the differences with mammals will be fundamental to discovering molecules able to stimulate the regeneration process in mammals. To identify the pancreatic cells able to(More)
Notch signaling has a fundamental role in stem cell maintenance and in cell fate choice in the intestine of different species. Canonically, Notch signaling represses the expression of transcription factors of the achaete-scute like (ASCL) or atonal related protein (ARP) families. Identifying the ARP/ASCL genes expressed in the gastrointestinal tract is(More)
  • 1