Learn More
Interactions between separate synaptic inputs converging on the same target appear to contribute to the fine-tuning of information processing in the central nervous system. Intersynaptic crosstalk is made possible by transmitter spillover from the synaptic cleft and its diffusion over a distance to neighboring synapses. This is the case for glutamate, which(More)
The osmolarity of the extracellular space (ECS) compartment is an important factor determining the excitability of neuronal tissue. In the adult hippocampus an important role of osmolarity and ECS diffusion parameters on the susceptibility to epileptic events is well established, but the influence of hypo- and hyperosmolar conditions on the immature(More)
Astrocytes dynamically interact with neurons to regulate synaptic transmission. Although the gap junction proteins connexin 30 (Cx30) and connexin 43 (Cx43) mediate the extensive network organization of astrocytes, their role in synaptic physiology is unknown. Here we show, by inactivating Cx30 and Cx43 genes, that astroglial networks tone down hippocampal(More)
Neuronal activity is accompanied by transmembranous ion fluxes that cause cell volume changes. In whole mounts of the guinea pig retina, application of glutamate resulted in fast swelling of neuronal cell bodies in the ganglion cell layer (GCL) and the inner nuclear layer (INL) (by approximately 40%) and a concomitant decrease of the thickness of glial cell(More)
  • 1