Learn More
Many blind people rely on echoes from self-produced sounds to assess their environment. It has been shown that human subjects can use echolocation for directional localization and orientation in a room, but echo-acoustic distance perception--e.g. to determine one's position in a room--has received little scientific attention, and systematic studies on the(More)
Bats quickly navigate through a highly structured environment relying on echolocation. Large natural objects in the environment, like bushes or trees, produce complex stochastic echoes, which can be characterized by the echo roughness. Previous work has shown that bats can use echo roughness to classify the stochastic properties of natural objects. This(More)
Humans reliably recognize spoken vowels despite the variability of the sounds caused by the across-subject variability of the speakers' vocal tract. The vocal tract serves as a resonator which imprints a spectral envelope onto the sounds generated by the vocal folds. This spectral envelope contains not only information about the type of vocalization but(More)
The ability of blind humans to navigate complex environments through echolocation has received rapidly increasing scientific interest. However, technical limitations have precluded a formal quantification of the interplay between echolocation and self-motion. Here, we use a novel virtual echo-acoustic space technique to formally quantify the influence of(More)
A water surface acts not only as an optic mirror but also as an acoustic mirror. Echolocation calls emitted by bats at low heights above water are reflected away from the bat, and hence the background clutter is reduced. Moreover, targets on the surface create an enhanced echo. Here, we formally quantified the effect of the surface and target height on both(More)
The precedence effect describes the phenomenon whereby echoes are spatially fused to the location of an initial sound by selectively suppressing the directional information of lagging sounds (echo suppression). Echo suppression is a prerequisite for faithful sound localization in natural environments but can break down depending on the behavioral context.(More)
Echolocating bats can identify three-dimensional objects exclusively through the analysis of acoustic echoes of their ultrasonic emissions. However, objects of the same structure can differ in size, and the auditory system must achieve a size-invariant, normalized object representation for reliable object recognition. This study describes both the(More)
Acoustic orientation most often takes place in echoic environments. The mammalian auditory system shows a variety of specializations to suppress misleading spatial information mediated by echoes. Psychophysically these specializations are summarized as the precedence effect. This study investigates how echolocating bats deal with multiple reflections of(More)
The nature of the neural processing underlying the extraction of pitch information from harmonic complex sounds is still unclear. Electrophysiological studies in the auditory nerve and many psychophysical and modeling studies suggest that pitch might be extracted successfully by applying a mechanism like autocorrelation to the temporal discharge patterns of(More)