Learn More
Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random(More)
To improve the ligament balancing procedure during total knee arthroplasty a force-sensing device to intraoperatively measure knee joint forces and moments has been developed. It consists of two sensitive plates, one for each condyle, a tibial base plate and a set of spaces to adapt the device thickness to the patient-specific tibiofemoral gap. Each(More)
This paper presents a firsthand comparative evaluation of three different existing methods for selecting a suitable allograft from a bone storage bank. The three examined methods are manual selection, automatic volume-based registration, and automatic surface-based registration. Although the methods were originally published for different bones, they were(More)
The correspondence problem is of high relevance in the construction and use of statistical models. Statistical models are used for a variety of medical application, e.g. segmentation, registration and shape analysis. In this paper, we present comparative studies in three anatomical structures of four different correspondence establishing methods. The goal(More)
It has been recognized that one of the most difficult steps in intramedullary nailing of femoral shaft fractures is the distal locking - the insertion of distal transverse interlocking screws, for which it is necessary to know the positions and orientations of the distal locking holes (DLHs) of the intramedullary nail (IMN). This paper presents a robust and(More)
Minimally invasive surgical interventions performed with the assistance of computerized navigation systems require reliable registration methods for preoperatively acquired patient anatomy representations. These registration methods have to be compatible with the minimally invasive paradigm. The use of the non-invasive brightness-mode ultrasound, which is(More)
This paper presents an automated solution for precise detection of fiducial screws from three-dimensional (3D) Computerized Tomography (CT)/Digital Volume Tomography (DVT) data for image-guided ENT surgery. Unlike previously published solutions, we regard the detection of the fiducial screws from the CT/DVT volume data as a pose estimation problem. We thus(More)
Bio-engineered cartilage has made substantial progress over the last years. Preciously few cases, however, are known where patients were actually able to benefit from these developments. In orthopaedic surgery, there are two major obstacles between in-vitro cartilage engineering and its clinical application: successful integration of an autologuous graft(More)
CONCLUSION Our self-developed planning and navigation system has proven its capacity for accurate surgery on the anterior and lateral skull base. With the incorporation of augmented reality, image-guided surgery will evolve into 'information-guided surgery'. OBJECTIVE Microscopic or endoscopic skull base surgery is technically demanding and its outcome(More)
OBJECTIVES During endoscopic surgery, it is difficult to ascertain the anatomical landmarks once the anatomy is fiddled with or if the operating area is filled with blood. An augmented reality system will enhance the endoscopic view and further enable surgeons to view hidden critical structures or the results of preoperative planning. METHOD The skull and(More)