Lutz-Peter Nolte

Learn More
The correspondence problem is of high relevance in the construction and use of statistical models. Statistical models are used for a variety of medical application, e.g. segmentation, registration and shape analysis. In this paper, we present comparative studies in three anatomical structures of four different correspondence establishing methods. The goal(More)
Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random(More)
To improve the ligament balancing procedure during total knee arthroplasty a force-sensing device to intraoperatively measure knee joint forces and moments has been developed. It consists of two sensitive plates, one for each condyle, a tibial base plate and a set of spaces to adapt the device thickness to the patient-specific tibiofemoral gap. Each(More)
OBJECTIVE To evaluate the integration and accuracy of A (amplitude)-mode ultrasound-based surface matching for noninvasive registration of the head into a frameless computer-aided surgery system for otorhinology and skull base surgery. DESIGN Experimental study and case series. SETTING Academic medical center. PATIENTS Twelve patients underwent(More)
OBJECTIVE To design and evaluate a novel CT-free image-guided surgical navigation system for assisting placement of both acetabular and femoral components in total hip arthroplasty (THA). MATERIALS AND METHODS The methodology in this paper is conceptually based on our previous work on CT-free cup placement. For femoral component placement, two(More)
High tibial osteotomy is a widely accepted treatment of medial compartment osteoarthritis as well as other lower extremity deformities. However, it is a technically demanding procedure. The lack of exact intraoperative real time control of the mechanical axis often results in postoperative malalignments, which is one reason for poor long term results. These(More)
Reconstruction of patient-specific 3D bone surface from 2D calibrated fluoroscopic images and a point distribution model is discussed. We present a 2D/3D reconstruction scheme combining statistical extrapolation and regularized shape deformation with an iterative image-to-model correspondence establishing algorithm, and show its application to reconstruct(More)
This paper presents a firsthand comparative evaluation of three different existing methods for selecting a suitable allograft from a bone storage bank. The three examined methods are manual selection, automatic volume-based registration, and automatic surface-based registration. Although the methods were originally published for different bones, they were(More)
A majority of pre-operative planning and navigational guidance during computer assisted orthopaedic surgery routinely uses three-dimensional models of patient anatomy. These models enhance the surgeon's capability to decrease the invasiveness of surgical procedures and increase their accuracy and safety. A common approach for this is to use computed(More)
This article presents a feasibility and evaluation study for using 2D ultrasound in conjunction with our statistical deformable bone model within the scope of computer-assisted surgery. The final aim is to provide the surgeon with enhanced 3D visualization for surgical navigation in orthopedic surgery without the need for preoperative CT or MRI scans. We(More)