Lutz Hilterhaus

Learn More
In contrast to the application of soluble enzymes in industry, immobilized enzymes often offer advantages in view of stability, volume specific biocatalyst loading, recyclability as well as simplified downstream processing. In this tutorial review the focus is set on the evaluation of immobilized enzymes in respect to mass transport limitations,(More)
Non-specific adsorption and specific interaction between a chimeric green fluorescent protein (GFP) carrying metal-binding region and the immobilized zinc ions on artificial solid-supported lipid membranes was investigated using the quartz crystal microbalance technique and the atomic force microscopy (AFM). Supported lipid bilayer, composed of octanethiol(More)
A solvent-free, chemoenzymatic reaction sequence for the enantioselective synthesis of β-amino acid esters has been kinetically and thermodynamically characterized. The coupled sequence comprises a thermal aza-Michael addition of cheap starting materials and a lipase catalyzed aminolysis for the kinetic resolution of the racemic ester. Excellent ee values(More)
In unstable emulsion systems, the determination of concentrations is a challenge. The use of standard methods like GC, HPLC, or titration is highly inaccurate and makes the acquisition of precise data for these systems complex. In addition, the handicap of high viscosity often comes into play. To overcome these fundamental limitations, the online FT-IR(More)
This contribution illustrates the versatility of fundamental approaches in industrial biotransformations. The applicability of biotechnology in organic synthesis on an industrial scale is discussed, followed by an overview of historical development and future progress. This chapter depicts three different approaches for the use of biocatalysts in production(More)
The influence of cholesterol and POPE on lung surfactant model systems consisting of DPPC/DPPG (80:20) and DPPC/DPPG/surfactant protein C (80:20:0.4) has been investigated. Cholesterol leads to a condensation of the monolayers, whereas the isotherms of model lung surfactant films containing POPE exhibit a slight expansion combined with an increased(More)
This study shows the effect of site-directed enzyme immobilization upon the enzyme activity of covalently bound glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. Immobilization points were introduced at sterically accessible sites in order to control the protein's orientation and twice as much activity was recovered in comparison to(More)
Biofilms are matrix-encapsulated cell aggregates that cause problems in technical and health-related areas; for example, 65 % of all human infections are biofilm associated. This is mainly due to their ameliorated resistance against antimicrobials and immune systems. Pseudomonas aeruginosa, a biofilm-forming organism, is commonly responsible for nosocomial(More)
A new in-line method for the monitoring of enzymatic hydrolysis of cellulose is described. Using a new in situ microscope prototype, the noninvasive determination of particle size distributions was possible. For the automated analysis of the acquired images, a new processing algorithm called CelluloseAnalyzer was developed. It enabled tracking of the number(More)
Levulinic acid is a feasible platform chemical derived from acid-catalyzed hydrolysis of lignocellulose. The conversion of this substrate to (S)-γ-valerolactone ((S)-GVL) was investigated in a chemo-enzymatic reaction sequence that benefits from mild reaction conditions and excellent enantiomeric excess of the desired (S)-GVL. For that purpose, levulinic(More)