Lutz G.W. Hilgenberg

Learn More
Agrin plays a key role in directing the differentiation of the vertebrate neuromuscular junction. Understanding agrin function at the neuromuscular junction has come via molecular genetic analyses of agrin as well as identification of its receptor and associated signal transduction pathways. Agrin is also expressed by many populations of neurons in brain,(More)
Febrile (fever-induced) seizures are the most common form of childhood seizures, affecting 3%-5% of infants and young children. Here we show that the activity-dependent, retrograde inhibition of GABA release by endogenous cannabinoids is persistently enhanced in the rat hippocampus following a single episode of experimental prolonged febrile seizures during(More)
The extracellular matrix molecule agrin mediates the motor neuron induced accumulation of acetylcholine receptors (AChR) at the neuromuscular junction. Agrin is also present in the CNS. However, while its spatiotemporal pattern of expression is consistent with a function in neuron-neuron synapse formation, it also suggests a role for agrin in other aspects(More)
Depolarization-induced suppression of inhibition (DSI) is an endocannabinoid-mediated short-term plasticity mechanism that couples postsynaptic Ca2+ rises to decreased presynaptic GABA release. Whether the gain of this retrograde synaptic mechanism is subject to long-term modulation by glutamatergic excitatory inputs is not known. Here, we demonstrate that(More)
Numerous studies suggest that the extracellular matrix protein agrin directs the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). Strong support for this hypothesis comes from the observation that the high density of acetylcholine receptors (AChR) normally present at the neuromuscular junction fails to form in muscle of embryonic(More)
Agrin mediates motor neuron-induced differentiation of the postsynaptic apparatus of the neuromuscular junction but its function in brain remains unknown. Here we report that expression of c-fos, induced by activation of nicotinic or glutamatergic receptors, was significantly lower in cortical neurons cultured from agrin-deficient mutant mouse embryos(More)
Agrin has been implicated in multiple aspects of central nervous system (CNS) neuron differentiation and function including neurite formation, synaptogenesis, and synaptic transmission. However, little is known about the signaling mechanisms whereby agrin exerts its effects. We have recently identified a neuronal receptor for agrin, whose activation induces(More)
Protein kinase C (PKC) is a family of enzymes involved in synapse formation and signal transduction at the neuromuscular junction. Two PKC isoforms, classical PKC alpha and novel PKC theta, have been shown to be enriched in skeletal muscle or localized to the endplate. We examined the role of nerve in regulating the expression of these PKC isoforms in rat(More)
Agrin, through its interaction with the receptor tyrosine kinase MuSK, mediates accumulation of acetylcholine receptors (AChR) at the developing neuromuscular junction. Agrin has also been implicated in several functions in brain. However, the mechanism by which agrin exerts its effects in neural tissue is unknown. Here we present biochemical evidence that(More)
Demyelination and axonal loss have been described as the histological hallmarks of inflammatory lesions of multiple sclerosis (MS) and are the pathological correlates of persistent disability. However, the immune mechanisms underlying axonal damage in MS remain unknown. Here, we report the use of single chain-variable domain fragments (scFv) from clonally(More)