Learn More
Despite many decades of study, mitotic chromosome structure and composition remain poorly characterized. Here, we have integrated quantitative proteomics with bioinformatic analysis to generate a series of independent classifiers that describe the approximately 4,000 proteins identified in isolated mitotic chromosomes. Integrating these classifiers by(More)
Higher-order multi-protein complexes such as RNA polymerase II (Pol II) complexes with transcription initiation factors are often not amenable to X-ray structure determination. Here, we show that protein cross-linking coupled to mass spectrometry (MS) has now sufficiently advanced as a tool to extend the Pol II structure to a 15-subunit, 670 kDa complex of(More)
The enzymatic transgalactosylation from lactose to fructose leading to the prebiotic disaccharide lactulose was investigated using the beta-galactosidase from Aspergillus oryzae and the hyperthermostable beta-glycosidase from Pyrococcus furiosus (CelB). The conditions for highest lactulose yields relative to the initial lactose concentration were(More)
The enzymatic production of lactulose was described recently through conversion of lactose by a thermophilic cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE). In the current study, we examined the application of CsCE for lactulose and epilactose production in milk (1.5% fat). The bioconversions were carried out in stirred reaction(More)
Lactic acid bacteria (LAB) are used widespread in the food industry as traditional starters for various fermented foods. For recombinant protein production, LAB would be superior with view from the food safety demands since most of them are Generally Recognized As Safe organisms. We investigated the two pSIP expression systems, pSIP403 and pSIP409 (Sørvig(More)
A continuous enzymatic process for the production of the prebiotic disaccharide lactulose through transgalactosylation was developed using free and immobilized beta-glycosidase from Pyrococcus furiosus. The hyperthermostable beta-glycosidase (CelB) was immobilized onto an anion-exchange resin (Amberlite IRA-93) or onto Eupergit C with immobilization yields(More)
The aminopeptidase P (PepP, EC 3.4.11.9) gene from Lactococcus lactis ssp. lactis DSM 20481 was cloned, sequenced and expressed recombinantly in E. coli BL21 (DE3) for the first time. PepP is involved in the hydrolysis of proline-rich proteins and, thus, is important for the debittering of protein hydrolysates. For accurate determination of PepP activity, a(More)
Plant cell lines represent useful models in plant cell biology. They allow simple analysis of the effects of various factors including modulated gene expression at cellular and subcellular levels. The tobacco BY-2 cell line is a favoured model due to its high proliferation rate, capability of effective synchronization, and accessibility to transformation. A(More)
The proline-specific X-prolyl dipeptidyl aminopeptidase (PepX; EC 3.4.14.11) and the general aminopeptidase N (PepN; EC 3.4.11.2) from Lactobacillus helveticus ATCC 12046 were produced recombinantly in E. coli BL21(DE3) via bioreactor cultivation. The maximum enzymatic activity obtained for PepX was 800 µkat(H-Ala-Pro-pNA) L(-1), which is approx. 195-fold(More)
The industrial manufacturing process of lactose-free milk products depends on the application of commercial β-galactosidase (lactase) preparations. These preparations are often obtained from Kluyveromyces lactis. There is a gene present in the genome of K. lactis which should encode for an enzyme called arylsulfatase (EC 3.1.6.1). Therefore, this enzyme(More)