Learn More
Adaptive variation in the traits determining ecological interactions can lead to evolution so rapid that ecological dynamics change course while in progress (i.e., 'eco-evolutionary dynamics'). However, little is known about how the qualitative properties of eco-evolutionary dynamics (e.g., cycling, equilibrium, etc.) are affected by the amount of heritable(More)
Both theory and experiments have demonstrated that sex can facilitate adaptation, potentially yielding a group-level advantage to sex. However, it is unclear whether this process can help solve the more difficult problem of the maintenance of sex within populations. Using experimental populations of the facultatively sexual rotifer Brachionus calyciflorus,(More)
The evolution and maintenance of sexual reproduction has puzzled biologists for decades. Although this field is rich in hypotheses, experimental evidence is scarce. Some important experiments have demonstrated differences in evolutionary rates between sexual and asexual populations; other experiments have documented evolutionary changes in phenomena related(More)
Character evolution that affects ecological community interactions often occurs contemporaneously with temporal changes in population size, potentially altering the very nature of those dynamics. Such eco-evolutionary processes may be most readily explored in systems with short generations and simple genetics. Asexual and cyclically parthenogenetic(More)
Discovering why natural population densities change over time and vary with location is a central goal of ecological and evolutional disciplines. The recognition that even simple ecological systems can undergo chaotic behaviour has made chaos a topic of considerable interest among theoretical ecologists. However, there is still a lack of experimental(More)
Feedbacks between ecological and evolutionary change may play important roles in community and ecosystem functioning, but a complete eco-evolutionary feedback loop has not been demonstrated at the community level, and we know little about molecular mechanisms underlying this kind of eco-evolutionary dynamics. In predator-prey (rotifer-alga) microcosms,(More)
The evolution of sex is a classic problem in evolutionary biology. While this topic has been the focus of much theoretical work, there is a serious dearth of empirical data. A simple yet fundamental question is how sex affects the mean and variance in fitness. Despite its importance to the theory, this type of data is available for only a handful of taxa.(More)
Rapid evolution in ecologically relevant traits has recently been recognized to significantly alter the interaction between consumers and their resources, a key interaction in all ecological communities. While these eco-evolutionary dynamics have been shown to occur when prey populations are evolving, little is known about the role of predator evolution and(More)
Traits affecting ecological interactions can evolve on the same time scale as population and community dynamics, creating the potential for feedbacks between evolutionary and ecological dynamics. Theory and experiments have shown in particular that rapid evolution of traits conferring defense against predation can radically change the qualitative dynamics(More)
Stability and persistence of populations is of great interest for management and conservation purposes. Spatial dynamics can have a crucial role in population stability via synchronization, and beneficial and detrimental effects on population persistence have been shown. Despite a theoretical understanding of synchronization, empirical data on synchrony of(More)