Lutz Andreas Eichacker

Learn More
We have characterized the biochemical nature and the function of PsbZ, the protein product of a ubiquitous open reading frame, which is known as ycf9 in Chlamydomonas and ORF 62 in tobacco, that is present in chloroplast and cyanobacterial genomes. After raising specific antibodies to PsbZ from Chlamydomonas and tobacco, we demonstrated that it is a bona(More)
Alb3 homologs Oxa1 and YidC have been shown to be required for the integration of newly synthesized proteins into membranes. Here, we show that although Alb3.1p is not required for integration of the plastid-encoded photosystem II core subunit D1 into the thylakoid membrane of Chlamydomonas reinhardtii, the insertion of D1 into functional photosystem II(More)
Vipp1 (vesicle inducing protein in plastids 1) is found in cyanobacteria and chloroplasts where it is essential for thylakoid formation. Arabidopsis thaliana mutant plants with a reduction of Vipp1 to about 20% of wild type content become albinotic at an early stage. We propose that this drastic phenotype results from an inability of the remaining Vipp1(More)
In the postgenomic era, the transformation of genetic information into biochemical meaning is required. We have analyzed the proteome of the chloroplast outer envelope membrane by an in silico and a proteomic approach. Based on its evolutionary relation to the outer membrane of Gram-negative bacteria, the outer envelope membrane should contain a large(More)
Vipp1 (vesicle-inducing protein in plastids 1) is found in Cyanobacteria and chloroplasts of photosynthetic eukaryotes where it is essential for the formation of the thylakoid membrane. Vipp1 is closely related to the phage shock protein A (PspA), a bacterial protein induced under diverse stress conditions. Vipp1 proteins differ from PspA by an additional(More)
Hcf136 encodes a hydrophilic protein localized in the lumen of stroma thylakoids. Its mutational inactivation in Arabidopsis thaliana results in a photosystem II (PHII)-less phenotype. Under standard illumination, PSII is not detectable and the amount of photosystem I (PSI) is reduced, which implies that HCF136p may be required for photosystem biogenesis in(More)
Natural compartmentalization makes proteome analysis of the cell, cell organelles and organelle subfractions possible. Protein complexes are the basis for the next level of compartmentalization that can be addressed well with proteomic technology. Protein complexes organize and maintain the cellular and organelle functions on all levels of complexity in(More)
Blue native polyacryamide gel electrophoresis is a special case of native electrophoresis for high resolution separation of enzymatically active protein complexes from tissue homogenates and cell fractions. The method is powerful between 10 and 10,000 kDa. Also membrane protein complexes are separated well after solubilization of complexes with mild neutral(More)
Accumulation of monomer and dimer photosystem (PS) II reaction center core complexes has been analyzed by two-dimensional Blue-native/SDS-PAGE in Synechocystis PCC 6803 wild type and in mutant strains lacking genes psbA, psbB, psbC, psbDIC/DII, or the psbEFLJ operon. In vivo pulse-chase radiolabeling experiments revealed that mutant cells assembled PSII(More)
Chloroplasts import post-translationally most of their constituent polypeptides via two distinct translocon units located in the outer and inner envelope. The protein import channel of the translocon of the outer envelope of chloroplasts, Toc75, is the most abundant protein in that membrane. We identify a novel Toc75 homologous protein, atToc75-V, a(More)