Learn More
Although Candida glabrata has emerged in recent years as a major fungal pathogen, there have been no reports demonstrating that it undergoes either the bud-hypha transition or high-frequency phenotypic switching, two developmental programs believed to contribute to the pathogenic success of other Candida species. Here it is demonstrated that C. glabrata(More)
Five histone deacetylase genes (HDA1, RPD3, HOS1, HOS2, and HOS3) have been cloned from Candida albicans and characterized. Sequence analysis and comparison with 17 additional deacetylases resulted in a phylogenetic tree composed of three major groups. Transcription of the deacetylases HDA1 and RPD3 is down-regulated in the opaque phase of the white-opaque(More)
Using degenerate primers of highly conserved regions of two-component response regulators for PCR amplification, a two-component response regulator was cloned from Candida albicans that is homologous to nik-1+ of Neurospora crassa. This two-component hybrid kinase, CaNIK1, also shows features of bacterial two-component response regulators, including a(More)
The steps from HIV-1 cytoplasmic entry until integration of the reverse transcribed genome are currently enigmatic. They occur in ill-defined reverse-transcription- and pre-integration-complexes (RTC, PIC) with various host and viral proteins implicated. In this study, we report quantitative detection of functional RTC/PIC by labeling nascent DNA combined(More)
Bictegravir (BIC; GS-9883), a novel, potent, once-daily, unboosted inhibitor of HIV-1 integrase (IN), specifically targets IN strand transfer activity (50% inhibitory concentration [IC50] of 7.5 ± 0.3 nM) and HIV-1 integration in cells. BIC exhibits potent and selective in vitro antiretroviral activity in both T-cell lines and primary human T lymphocytes,(More)
Bovine lens aldose reductase (ALR2), which catalyzes the NADPH-dependent reduction of 4-hydroxy-2-nonenal (HNE), is readily inactivated by its own substrate in a time- and concentration-dependent manner. Both DTT and NADP+ can prevent enzyme inactivation but neither extensive dialysis nor thiol-reducing treatment were able to restore enzyme activity once(More)
The infectious yeast Candida albicans progresses through two developmental programs which involve differential gene expression, the bud-hypha transition and high-frequency phenotypic switching. To understand how differentially expressed genes are regulated in this organism, the promoters of phase-specific genes must be functionally characterized, and a(More)
The Candida albicans gene EFG1 encodes a putative trans-acting factor. In strain WO-1, which undergoes the white-opaque transition, EFG1 is transcribed as a 3.2-kb mRNA in white-phase cells and a less-abundant 2.2-kb mRNA in opaque-phase cells. cDNA sequencing and 5' rapid amplification of cDNA ends analysis demonstrate that the major difference in(More)
HIV-1 integrase (IN) is the target for two classes of antiretrovirals: i) the integrase strand-transfer inhibitors (INSTIs) and ii) the non-catalytic site integrase inhibitors (NCINIs). NCINIs bind at the IN dimer interface and are thought to interfere primarily with viral DNA (vDNA) integration in the target cell by blocking IN-vDNA assembly as well as the(More)
Candida albicans strain WO-1 undergoes two developmental programs, the bud-hypha transition and high-frequency phenotypic switching in the form of the white-opaque transition. The WH11 gene is expressed in the white budding phase but is inactive in the white hyphal phase and in the opaque budding phase. WH11 expression, therefore, is regulated in the two(More)