Luke Windsor

Learn More
Matrix metalloproteinases (MMPs) are a family of nine or more highly homologous Zn(++)-endopeptidases that collectively cleave most if not all of the constituents of the extracellular matrix. The present review discusses in detail the primary structures and the overlapping yet distinct substrate specificities of MMPs as well as the mode of activation of the(More)
PURPOSE To determine transforming growth factor (TGF) beta effects on matrix metalloproteinases (MMPs) as a potential cause of the blood-retinal barrier breakdown at the onset of angiogenesis. Previously, glial cells were shown to play a role in the angiogenesis process and to express the angiogenic regulating factor TGF-beta, which becomes active under(More)
The stromelysin-2 (SL-2) gene is transcriptionally active in normal human keratinocytes and encodes a secreted, catalytically competent but latent matrix metalloproteinase. Phorbolester induction resulted in the emergence of SL-2 (but not SL-1 transcripts), whereas the opposite was true for human mucosal fibroblasts. Expression of keratinocyte SL-2 was also(More)
Vascular endothelial growth factor/vascular permeability factor (VEGF) has been implicated in blood/tissue barrier dysfunctions associated with pathological angiogenesis, but the mechanisms of VEGF-induced permeability increase are poorly understood. Here, the role of VEGF-induced extracellular proteolytic activities on the endothelial cell permeability(More)
There is a growing body of evidence that implicates matrix metalloproteinases (MMPs) as major players in numerous diseased conditions. The articular cartilage degradation that is characteristic of rheumatoid arthritis (RA) is believed to be mediated by the collagenase subfamily of matrix metalloproteinases. The preference of collagenase-3 (CL-3) for(More)
Every year, despite the effectiveness of preventive dentistry and dental health care, 290 million fillings are placed each year in the United States; two-thirds of these involve the replacement of failed restorations. Improvements in the success of restorative treatments may be possible if caries management strategies, selection of restorative materials,(More)
An electrospun nanocomposite fibrous material holds promise as a scaffold, as well as a drug-delivery device to aid in root maturogenesis and the regeneration of the pulp-dentine complex. A novel three-dimensional (3D) nanocomposite scaffold composed of polydioxanone (PDS II®) and halloysite nanotubes (HNTs) was designed and fabricated by electrospinning.(More)
AIM The purpose of this in vitro study was to evaluate the effects of intracanal medicaments commonly used in endodontic regeneration on the survival of human dental pulp cells (DPCs). METHODS DPCs were cultured and exposed to either no medicament treatment or low concentrations (0.3-5 mg ml(-1) ) of calcium hydroxide [Ca(OH)2 ], triple antibiotic paste(More)
This article presents details of fabrication, biological activity (i.e., anti-matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)-encapsulated halloysite nanotube (HNT)-modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated(More)