Learn More
Scleractinian corals have demonstrated the ability to shuffle their endosymbiotic dinoflagellate communities (genus Symbiodinium) during periods of acute environmental stress. This has been proposed as a mechanism of acclimation, which would be increased by a diverse and flexible association with Symbiodinium. Conventional molecular techniques used to(More)
A detailed understanding of the genetic structure of populations and an accurate interpretation of processes driving contemporary patterns of gene flow are fundamental to successful spatial conservation management. The field of seascape genetics seeks to incorporate environmental variables and processes into analyses of population genetic data to improve(More)
Understanding source-sink dynamics is important for conservation management, particularly when climatic events alter species' distributions. Following a 2011 'marine heatwave' in Western Australia, we observed high recruitment of the endemic fisheries target species Choerodon rubescens, towards the cooler (southern) end of its distribution. Here, we use a(More)
The Houtman Abrolhos Islands (29° 00′ S) are the southernmost coral reefs in the Indian Ocean, located 60 km off central Western Australia. The “Anemone Lump”, a 185×400 m reef that rises steeply from 38 m to 4 m, is the premier dive site at the Islands, with a dedicated underwater tourist trail. The site is a fish habitat protection area and tourist(More)
Ecological damage from periodic environmental extremes is often repaired in resilient ecosystems, but the rate of return to a non-damaged state is critical. Measures of recovery of communities include biomass, productivity and diversity, while measures of recovery of individuals tend to focus on physiological conditions and the return to normal metabolic(More)
Global climate change poses a serious threat to the future health of coral reef ecosystems. This calls for management strategies that are focused on maximizing the evolutionary potential of coral reefs. Fundamental to this is an accurate understanding of the spatial genetic structure in dominant reef-building coral species. In this study, we apply a(More)
Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis(More)
Understanding the genetic basis of reproductive isolation is a long-standing goal of speciation research. In recently diverged populations, genealogical discordance may reveal genes and genomic regions that contribute to the speciation process. Previous work has shown that conspecific colonies of Acropora that spawn in different seasons (spring and autumn)(More)
  • 1