Luke M. Mooney

Learn More
Many soldiers are expected to carry heavy loads over extended distances, often resulting in physical and mental fatigue. In this study, the design and testing of an autonomous leg exoskeleton is presented. The aim of the device is to reduce the energetic cost of loaded walking. In addition, we present the Augmentation Factor, a general framework of(More)
Passive exoskeletons that assist with human locomotion are often lightweight and compact, but are unable to provide net mechanical power to the exoskeletal wearer. In contrast, powered exoskeletons often provide biologically appropriate levels of mechanical power, but the size and mass of their actuator/power source designs often lead to heavy and unwieldy(More)
Ankle exoskeletons can now reduce the metabolic cost of walking in humans without leg disability, but the biomechanical mechanisms that underlie this augmentation are not fully understood. In this study, we analyze the energetics and lower limb mechanics of human study participants walking with and without an active autonomous ankle exoskeleton previously(More)
Currently, the mobility of above-knee amputees is limited by the lack of available prostheses that can efficiently replicate biologically accurate movements. In this study, a powered knee prosthesis was designed utilizing a novel mechanism, known as a clutchable series-elastic actuator (CSEA).The CSEA includes a low-power clutch in parallel with an electric(More)
This paper examines the impact of a biomimetic active knee prosthesis on the metabolic costs associated with a unilateral transfemoral amputee walking at self selected speed. In this study we compare the antagonistic active knee prosthesis developed at MIT to an electronically controlled, variable-damping commercial knee prosthesis, the Otto Bock C-leg. Use(More)
Actuator efficiency is an important factor in the design of powered leg prostheses, orthoses, exoskeletons, and legged robots. A continuously-variable series-elastic actuator (CV-SEA) is presented as an efficient actuator for legged locomotion. The CV-SEA implements a continuously-variable transmission (CVT) between a motor and series elastic element. The(More)
The cyclic and often linear torque-angle relationship of locomotion presents the opportunity to innovate on the design of traditional series-elastic actuators (SEAs). In this paper, a novel modification to the SEA architecture was proposed by adding a clutch in parallel with the motor within the SEA - denoted as a CSEA. This addition permits bimodal(More)
We developed an autonomous powered leg exoskeleton capable of providing large amounts of positive mechanical power to the wearer during powered plantarflexion phase of walking. The autonomous exoskeleton consisted of a winch actuator fasted to the shin which pulled on fiberglass struts attached to a boot. The fiberglass struts formed a rigid extension of(More)
By design, commonly worn energy storage and release (ESR) prosthetic feet cannot provide biologically realistic ankle joint torque and angle profiles during walking. Additionally, their anthropomorphic, cantilever architecture causes their mechanical stiffness to decrease throughout the stance phase of walking, opposing the known trend of the biological(More)
The loss of a lower extremity severely affects quality of life for hundreds of thousands of leg amputees in the United States, and millions worldwide. The vast majority of these individuals use mechanically passive prostheses that do not provide energy during gait. As a result, leg amputees fatigue quickly, walk more slowly, and have difficulty interacting(More)