Luke Jeffrey Janssen

Learn More
Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series of events leading to asthmatic symptoms is not clear. It is(More)
In general, excitation-contraction coupling in muscle is dependent on membrane depolarization and hyperpolarization to regulate the opening of voltage-dependent Ca(2+) channels and, thereby, influence intracellular Ca(2+) concentration ([Ca(2+)](i)). Thus Ca(2+) channel blockers and K(+) channel openers are important tools in the arsenals against(More)
Traditionally, the contractile properties of airway smooth muscle have been regarded as its sole contribution to the pathogenesis of asthma. However, our understanding of the role that this structural cell plays in asthma is changing. Airway smooth muscle can undergo hyperplasia and/or hypertrophy leading to structural changes in the airway wall which(More)
We examined the voltage-dependent Ca2+ currents in freshly dissociated smooth muscle cells obtained from canine bronchi (3rd to 5th order). When cells were depolarized from -40 mV, we observed an inward current that 1) exhibited threshold and peak activation at approximately -35 mV and +10 mV, respectively; 2) inactivated slowly with half-inactivation at(More)
Ultimately, asthma is a disease characterized by constriction of airway smooth muscle (ASM). The earliest approach to the treatment of asthma comprised the use of xanthines and anti-cholinergics with the later introduction of anti-histamines and anti-leukotrienes. Agents directed at ion channels on the smooth muscle membrane (Ca2+ channel blockers, K+(More)
Recently, we have shown that Rho and Rho-activated kinase (ROCK) may become activated by high-millimolar KCl, which had previously been widely assumed to act solely through opening of voltage-dependent Ca(2+) channels. In this study, we explored in more detail the relationship between membrane depolarization, Ca(2+) currents, and activation of Rho/ROCK in(More)
Tetraethylammonium (TEA) 925 mM), 4-aminopyridine (4-AP) (5 mM) and carbachol (3 X 10(-7) M) elicited membrane depolarization (approximately 20 mV) and oscillation (0.5-1.0 Hz; up to 25 mV in amplitude) in canine bronchi (3rd to 5th order). BaCl2 (1 mM) also elicited large depolarizations but not oscillations. The oscillations were antagonized by(More)
Asthma is a disease characterised by reversible contraction of airway smooth muscle. Many signalling pathways are now known to underlie that contraction, almost all of which revolve around Ca(2+) handling. Ca(2+) homeostasis in turn is governed by a wide variety of ionic mechanisms, which are still poorly understood. The present review will briefly(More)
We examined cytosolic concentration of Ca2+ ([Ca2+]i) in canine airway smooth muscle using fura 2 fluorimetry (global changes in [Ca2+]i), membrane currents (subsarcolemmal [Ca2+]i), and contractions (deep cytosolic [Ca2+]i). Acetylcholine (10(-4) M) elicited fluorimetric, electrophysiological, and mechanical responses. Caffeine (5 mM), ryanodine (0.1-30(More)