Lukasz Mateusz Szewczyk

Learn More
β-Catenin signaling, leading to the activation of lymphoid enhancer-binding factor 1/T cell factor (LEF1/TCF) transcription factors, plays a well-established role in transcription regulation during development and tissue homeostasis. In the adult organism, the activity of this pathway has been found in stem cell niches and postmitotic thalamic neurons.(More)
The mechanism of lithium's therapeutic action remains obscure, hindering the discovery of safer treatments for bipolar disorder. Lithium can act as an inhibitor of the kinase GSK3α/β, which in turn negatively regulates β-catenin, a co-activator of LEF1/TCF transcription factors. However, unclear is whether therapeutic levels of lithium activate β-catenin in(More)
We have examined the effects of nitric oxide donors and acrylamide on mesenchymal progenitor cell (hMPC) viability, programmed cell death (PCD) and differentiation. Acrylamide was examined at 0.5mM and 1.5mM concentrations, NOC-18 at 10μM and SNP at 100μM. Cell viability was assayed with MTS, PCD was determined by phosphatidylserine, caspase-9 and -3/7 and(More)
ST8SIA2 is a polysialyltransferase that attaches polysialic acid to the glycoproteins NCAM1 and CADM1. Polysialylation is involved in brain development and plasticity. ST8SIA2 is a schizophrenia candidate gene, and St8sia2-/- mice exhibit schizophrenia-like behavior. We sought to identify new pathological consequences of ST8SIA2 deficiency. Our proteomic(More)
  • 1