Lukasz Cwiklik

Learn More
Charybdotoxin, belonging to the group of so-called scorpion toxins, is a short peptide able to block many voltage-gated potassium channels, such as mKv1.3, with high affinity. We use a reliable homology model based on the high-resolution crystal structure of the 94% sequence identical homologue Kv1.2 for charybdotoxin docking followed by molecular dynamics(More)
Physical properties of oxidized phospholipid (OxPL) membranes consisting of binary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 10 mol % of one of two OxPLs, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC) or 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), were investigated experimentally and(More)
This review focuses on the influence of oxidized phosphatidylcholines (oxPCs) on the biophysical properties of model membranes and is limited to fluorescence, EPR, and MD studies. OxPCs are divided into two classes: A) hydroxy- or hydroperoxy-dieonyl phospatidylcholines, B) phospatidylcholines with oxidized and truncated chains with either aldehyde or(More)
Fluorescence solvent relaxation experiments are based on the characterization of time-dependent shifts in the fluorescence emission of a chromophore, yielding polarity and viscosity information about the chromophore's immediate environment. A chromophore applied to a phospholipid bilayer at a well-defined location (with respect to the z-axis of the bilayer)(More)
Since pharmacokinetic and pharmacodynamic activities of drugs are often related to their interactions with biomembranes, it is of high interest to establish an approach for the characterization of these interactions at the molecular level. For the present study, beta-blockers (oxprenolol, propranolol, and acebutolol) were selected due to their well(More)
Lipid asymmetry is a ubiquitous property of the lipid bilayers in cellular membranes and its maintenance and loss play important roles in cell physiology, such as blood coagulation and apoptosis. The resulting exposure of phosphatidylserine on the outer surface of the plasma membrane has been suggested to be caused by a specific membrane enzyme, scramblase,(More)
Under conditions of oxidative stress, 4-hydroxy-2-nonenal (4-HNE) is commonly present in vivo. This highly reactive and cytotoxic compound is generated by oxidation of lipids in membranes and can be easily transferred from a membrane to both cytosol and the extracellular space. Employing time-dependent fluorescence shift (TDFS) method and molecular dynamics(More)
The main biological cause of oxysterols is the oxidation of cholesterol. They differ from cholesterol by the presence of additional polar groups that are typically hydroxyl, keto, hydroperoxy, epoxy, or carboxyl moieties. Under typical conditions, oxysterol concentration is maintained at a very low and precisely regulated level, with an excess of(More)
The behavior of oxysterols in phospholipid membranes and their effects on membrane properties were investigated by means of dynamic light scattering, fluorescence spectroscopy, NMR, and extensive atomistic simulations. Two families of oxysterols were scrutinized-tail-oxidized sterols, which are mostly produced by enzymatic processes, and ring-oxidized(More)
The effect of lipid oxidation on water permeability of phosphatidylcholine membranes was investigated by means of both scattering stopped flow experiments and atomistic molecular dynamics simulations. Formation of water pores followed by a significant enhancement of water permeability was observed. The molecules of oxidized phospholipids facilitate pore(More)