Learn More
The ability to analyze and understand the mechanisms by which cells process information is a key question of systems biology research. Such mechanisms critically depend on reversible phosphorylation of cellular proteins, a process that is catalyzed by protein kinases and phosphatases. Here, we present PhosphoPep, a database containing more than 10 000(More)
The rise of systems biology implied a growing demand for highly sensitive techniques for the fast and consistent detection and quantification of target sets of proteins across multiple samples. This is only partly achieved by classical mass spectrometry or affinity-based methods. We applied a targeted proteomics approach based on selected reaction(More)
Over the past decade, a series of experimental strategies for mass spectrometry based quantitative proteomics and corresponding computational methodology for the processing of the resulting data have been generated. We provide here an overview of the main quantification principles and available software solutions for the analysis of data generated by liquid(More)
BACKGROUND Quantitative proteomics holds great promise for identifying proteins that are differentially abundant between populations representing different physiological or disease states. A range of computational tools is now available for both isotopically labeled and label-free liquid chromatography mass spectrometry (LC-MS) based quantitative(More)
Current methods for phosphoproteome analysis have several limitations. First, most methods for phosphopeptide enrichment lack the specificity to truly purify phosphopeptides. Second, fragmentation spectra of phosphopeptides, in particular those of phosphoserine and phosphothreonine containing peptides, are often dominated by the loss of the phosphate(More)
BACKGROUND Confocal laser scanning microscopy (CLSM) is the method of choice to study interfacial biofilms and acquires time-resolved three-dimensional data of the biofilm structure. CLSM can be used in a multi-channel modus where the different channels map individual biofilm components. This communication presents a novel image quantification tool, PHLIP,(More)
  • 1