Learn More
PURPOSE To systematically evaluate the dependence of intravoxel-incoherent-motion (IVIM) parameters on the b-value threshold separating the perfusion and diffusion compartment, and to implement and test an algorithm for the standardized computation of this threshold. METHODS Diffusion weighted images of the upper abdomen were acquired at 3 Tesla in eleven(More)
BACKGROUND AND PURPOSE Normative age-related decline in paravertebral muscle quality is important for reference to disease and risk identification in patients. We aimed to establish age- and vertebral level-dependence of paravertebral (multifidus and erector spinae) muscle volume and fat content in healthy adult volunteers. MATERIALS AND METHODS In this(More)
To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA. After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25–32) was performed at 3 T using a 16-channel hand/wrist(More)
BACKGROUND In multiple sclerosis (MS) regional grey matter (GM) atrophy has been associated with disability progression. OBJECTIVE The aim of this study was to compare regional GM volume changes in relapsing-remitting MS (RRMS) patients with progressive and stable disability, using voxel-based morphometry (VBM). METHODS We acquired baseline and 1-year(More)
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. MS lesions show a typical distribution pattern and primarily affect the white matter (WM) in the periventricular zone and in the centrum semiovale. OBJECTIVE To track lesion development during disease progression, we compared the spatiotemporal distribution(More)
OBJECTIVES The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a(More)
INTRODUCTION Diffusion kurtosis imaging (DKI) is based on a non-Gaussian diffusion model that should inherently better account for restricted water diffusion within the complex microstructure of most tissues than the conventional diffusion-weighted imaging (DWI), which presumes Gaussian distributed water molecule displacement probability. The aim of this(More)
The purpose of this work was to demonstrate the feasibility of intravoxel incoherent motion imaging (IVIM) for non-invasive quantification of perfusion and diffusion effects in skeletal muscle at rest and following exercise. After IRB approval, eight healthy volunteers underwent diffusion-weighted MRI of the forearm at 3 T and eight different b values(More)
OBJECTIVE The aim of this study was to investigate the feasibility of accelerated diffusion tensor imaging (DTI) of skeletal muscle using echo planar imaging (EPI) applying simultaneous multislice excitation with a blipped controlled aliasing in parallel imaging results in higher acceleration unaliasing technique. MATERIALS AND METHODS After federal(More)
OBJECTIVES To investigate the technical feasibility of whole-body intravoxel incoherent motion (IVIM) imaging. MATERIALS AND METHODS Whole-body MR images of eight healthy volunteers were acquired at 3T using a spin-echo echo-planar imaging sequence with eight b-values. Coronal parametrical whole-body maps of diffusion (D), pseudodiffusion (D*), and the(More)