Learn More
As an essential nutrient and a potential toxin, iron poses an exquisite regulatory problem in biology and medicine. At the cellular level, the basic molecular framework for the regulation of iron uptake, storage, and utilization has been defined. Two cytoplasmic RNA-binding proteins, iron-regulatory protein-1 (IRP-1) and IRP-2, respond to changes in(More)
Iron regulatory factor (IRF) is a cytoplasmic mRNA-binding protein with specificity for iron-responsive element (IRE) RNA stem-loops. IRF post-transcriptionally regulates intracellular iron levels via binding to IREs in the untranslated regions of ferritin, transferrin receptor, and erythroid 5-aminolevulinic-acid synthase mRNAs. Specific IRE nucleotides(More)
A kidney cortex cDNA clone (rBAT) has recently been isolated, which upon in vitro transcription and capping complementary RNA (cRNA) and injection into Xenopus laevis oocytes induces a system b0,(+)-like amino acid transport activity. This cDNA encodes a type II membrane glycoprotein that shows significant homology to another type II membrane glycoprotein,(More)
The control of cellular iron homeostasis involves the coordinate post-transcriptional regulation of ferritin mRNA translation and transferring receptor mRNA stability. These regulatory events are mediated by a soluble cytoplasmic protein, iron regulatory factor (IRF), which binds specifically to mRNA hairpin structures, termed iron-responsive elements(More)
Glycoprotein-associated amino acid transporters (gpaAT) are permease-related proteins that require heterodimerization to express their function. So far, four vertebrate gpaATs have been shown to associate with 4F2hc/CD98 for functional expression, whereas one gpaAT specifically associates with rBAT. In this study, we characterized a novel gpaAT, LAT2, for(More)
Iron regulates human transferrin receptor (hTR) expression by modulating the stability of cytoplasmic hTR mRNA. This regulation requires a distinct secondary structure in the mRNA 3' untranslated region. We identified a specific cytoplasmic factor that binds simultaneously to four homologous palindromes within the regulatory domain. Iron chelator induced(More)
Proteins that shuttle between nucleus and cytoplasm are implicated in transport and signal transduction processes. Using assays based on interspecies heterokaryons and microinjection of Xenopus oocytes, we examined what structural features determine nuclear export of shuttling proteins. Three classes of proteins were studied: first, wild-type and mutant(More)
The transferrin receptor (TR) mediates cellular iron uptake by bringing about the endocytosis of transferrin. We investigated whether the cytoplasmic domain of 65 N-terminal amino acids or phosphorylated sites within this domain constitute a structure that is required for TR endocytosis. To test this hypothesis, we modified the cytoplasmic serine residues(More)
UNLABELLED Ferritin plays a central role in iron metabolism by acting both as iron storage and a detoxifying protein. We generated a ferritin H allele with loxP sites and studied the conditional ferritin H deletion in adult mice. Ten days after Mx-Cre induced deletion, ferritin H messenger RNA (mRNA) was below 5% in the liver, spleen, and bone marrow of(More)
Members of the newly discovered glycoprotein-associated amino acid transporter family (gpaAT-family) share a similar primary structure with >40% identity, a predicted 12-transmembrane segment topology and the requirement for association with a glycoprotein (heavy chain) for functional surface expression. Five of the six identified gpaATs (light chains)(More)