Luiz G. Hafemann

Learn More
—Automatic Offline Handwritten Signature Verification has been researched over the last few decades from several perspectives, using insights from graphology, computer vision, signal processing, among others. In spite of the advancements on the field, building classifiers that can separate between genuine signatures and skilled forgeries (forgeries made(More)
The area of Handwritten Signature Verification has been broadly researched in the last decades and still remains as an open research problem. This report focuses on offline signature verification, characterized by the usage of static (scanned) images of signatures, where the objective is to discriminate if a given signature is genuine (produced by the(More)
—Research on Offline Handwritten Signature Verification explored a large variety of handcrafted feature extractors, ranging from graphology, texture descriptors to interest points. In spite of advancements in the last decades, performance of such systems is still far from optimal when we test the systems against skilled forgeries-signature forgeries that(More)
  • 1