Luisa Petti

Learn More
Recently, transition metal dichalcogenides (TMDCs) have attracted interest thanks to their large field effective mobility (>100 cm(2)/V · s), sizable band gap (around 1-2 eV), and mechanical properties, which make them suitable for high performance and flexible electronics. In this paper, we present a process scheme enabling the fabrication and transfer of(More)
Electronics on very thin substrates have shown remarkable bendability, conformability and lightness, which are important attributes for biological tissues sensing, wearable or implantable devices. Here we propose a wafer-scale process scheme to realize ultra flexible, lightweight and transparent electronics on top of a 1-μm thick parylene film that is(More)
The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has(More)
Being the closest layer to our body, textiles provide an ideal platform for integrating sensors and actuators to monitor physiological signals. We used a woven textile to integrate photodiodes and light emitting diodes. LEDs and photodiodes enable near-infrared spectroscopy (NIRS) systems to monitor arterial oxygen saturation and oxygenated and deoxygenated(More)
— Flexible large area electronics promise to enable new devices such as rollable displays and electronic skins. Radio frequency (RF) applications demand circuits operating in the megahertz regime, which is hard to achieve for electronics fabricated on amorphous and temperature sensitive plastic substrates. Here, we present self-aligned amorphous indium–(More)
Smart biomimetics, a unique class of devices combining the mechanical adaptivity of soft actuators with the imperceptibility of microelectronics, is introduced. Due to their inherent ability to self-assemble, biomimetic microelectronics can firmly yet gently attach to an inorganic or biological tissue enabling enclosure of, for example, nervous fibers, or(More)
This paper presents the design, implementation and characterization of an integrated power efficient cascode amplifier in a flexible a-IGZO thin-film transistors (TFTs) with minimum channel lengths of 25 μm. The circuit consists of a two-stage cascode amplifier for the audio baseband amplification and a source-follower as a buffer to drive printed(More)
This paper presents two Cherry-Hooper amplifiers for bendable analog radio-frequency electronic systems fabricated in flexible self-aligned amorphous indium gallium zinc oxide (a-IGZO) thin-film-transistor (TFT) technology. The first circuit is a wideband single-stage Cherry-Hooper amplifier providing a voltage gain of 10.4 dB over a 3 dB bandwidth of 3.5(More)
The fabrication of electronic devices, such as gas sensors on flexible polymer substrates, enables the use of electronics in applications where conventional devices on stiff substrates could not be used. We demonstrate the development of a new intra-tube electronic-nose (e-nose) gas sensor device with multiple sensors fabricated and integrated on a flexible(More)