Learn More
Astrocytes in the brain form an intimately associated network with neurons. They respond to neuronal activity and synaptically released glutamate by raising intracellular calcium concentration ([Ca2+]i), which could represent the start of back-signalling to neurons. Here we show that coactivation of the AMPA/kainate and metabotropic glutamate receptors(More)
The spatial-temporal characteristics of intracellular calcium ([Ca2+]i) changes elicited in neurons and astrocytes by various types of stimuli were investigated by means of confocal fluorescent microscopy in acute rat brain slices loaded with the Ca2+ indicator indo-1. Neurons and astrocytes from the visual cortex and CA1 hippocampal region were identified(More)
To obtain insights into the spatiotemporal characteristics and mechanism of Ca(2+)-dependent glutamate release from astrocytes, we developed a new experimental approach using human embryonic kidney (HEK) 293 cells transfected with the NMDA receptor (NMDAR), which act as glutamate biosensors, plated on cultured astrocytes. We here show that oscillations of(More)
Calcium ions play crucial roles in a large variety of cell functions. The recent proposal that changes in the intracellular calcium concentration ([Ca2+]i) in astrocytes underline a reciprocal communication system between neurons and astrocytes encourages the interest in the definition of the various components participating in this novel Ca2+ signaling(More)
Long-term changes of synaptic strength in the central nervous system are mediated by an increase of cytosolic calcium concentration ([Ca2+]i) following activation of excitatory neurotransmitter receptors. These phenomena, which represent a possible cellular basis for learning and memory processes in eukaryotes, are believed to be restricted to neurons. Here(More)
Cellular calcium handling was examined in brain slices from transgenic antisense mice with a regional deficiency in the neuronal calcium binding protein calbindin D28k and from their non transgenic wild type litter mate controls. Depolarization of brain slices with NMDA or potassium produced a prolonged elevation of neuronal calcium signal in neurons in(More)
The substantia gelatinosa of the spinal cord (lamina II) is the major site of integration for nociceptive information. Activation of NMDA glutamate receptor, production of nitric oxide (NO), and enhanced release of substance P and calcitonin gene-related peptide (CGRP) from primary afferents are key events in pain perception and central hyperexcitability.(More)
The stochastic theory of size exclusion chromatography (SEC) was applied to analyze the peak shape of chromatograms obtained with a wide range of polystyrene standards on various columns. The columns were packed with stationary phases of different pore sizes. The stochastic-dispersive model of SEC results in a peak shape model that fits well the symmetrical(More)
The heterogeneous proline-catalyzed aldol reaction was investigated under continuous-flow conditions by means of a packed-bed microreactor. Reaction-progress kinetic analysis (RPKA) was used in combination with nonlinear chromatography for the interpretation, under synthetically relevant conditions, of important mechanistic aspects of the heterogeneous(More)
  • 1