Learn More
The world's oceans contain a complex mixture of micro-organisms that are for the most part, uncharacterized both genetically and biochemically. We report here a metagenomic study of the marine planktonic microbiota in which surface (mostly marine) water samples were analyzed as part of the Sorcerer II Global Ocean Sampling expedition. These samples,(More)
  • Patricia M. Valdespino-Castillo, Rocío J. Alcántara-Hernández, Martín Merino-Ibarra, Javier Alcocer, Miroslav Macek, Octavio A. Moreno-Guillén +1 other
  • 2016
Microbes can modulate ecosystem function since they harbor a vast genetic potential for biogeochemical cycling. The spatial and temporal dynamics of this genetic diversity should be acknowledged to establish a link between ecosystem function and community structure. In this study, we analyzed the genetic diversity of bacterial phosphorus utilization genes(More)
Microbialites and microbial mats are complex communities with high phylogenetic diversity. These communities are mostly composed of bacteria and archaea, which are the earliest living forms on Earth and relevant to biogeochemical evolution. In this study, we identified the shared metabolic pathways for uptake of inorganic C and N in microbial mats and(More)
  • Mario Carrillo-Araujo, Neslihan Taş, Rocio J. Alcántara-Hernández, Osiris Gaona, Jorge E. Schondube, Rodrigo A. Medellín +2 others
  • 2015
The members of the Phyllostomidae, the New-World leaf-nosed family of bats, show a remarkable evolutionary diversification of dietary strategies including insectivory, as the ancestral trait, followed by appearance of carnivory and plant-based diets such as nectarivory and frugivory. Here we explore the microbiome composition of different feeding(More)
  • Rocio J. Alcántara-Hernández, Carla M. Centeno, Alejandro Ponce-Mendoza, Silvia Batista, Martin Merino-Ibarra, Julio Campo +1 other
  • 2013
Cyanobacterial microbial mats are highly structured communities commonly found in Antarctic inland waters including melt streams. These benthic microbial associations comprise a large number of microorganisms with different metabolic capacities, impacting nutrient dynamics where established. The denitrification process is a feasible nitrogen loss pathway(More)
  • 1