Luisa E Brighton

Learn More
When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of airway epithelial biology and differentiation. We have performed microarray analysis(More)
The emergence of air-liquid interface (ALI) culturing of mammalian airway epithelium is a recent innovation for experimental modeling of airway epithelial development, function, and pathogenic mechanisms associated with infectious agent and irritant exposure. This construct provides an experimental platform for in vitro propagation, manipulation, and(More)
Anion exchange protein 2 (AE2) is a membrane-bound protein that mediates chloride-bicarbonate exchange. In addition to regulating intracellular pH and cell volume, AE2 exports superoxide (O.) to the extracellular matrix in an HCO-dependent process. Given this ability to export O., we hypothesized that expression of AE2 in the lung is regulated by oxidative(More)
Several factors, such as age and nutritional status, can affect the susceptibility to influenza infections. Moreover, exposure to air pollutants, such as diesel exhaust (DE), has been shown to affect respiratory virus infections in rodent models. Influenza virus primarily infects and replicates in respiratory epithelial cells, which are also a major targets(More)
The most conspicuous evidence of airway epithelial maturation and vitality is the presence of motile cilia. In an effort to generate genetic and antigenic markers of airway maturation, injury, and repair, we characterized airway epithelial expression of a gene identified by two human expressed sequence tags that encoded peptides with sequence similarity to(More)
The ciliated epithelium of the respiratory airways is one of the first vital systemic surfaces in contact with the ambient air. Ex vivo nasal epithelial ciliary beat frequency (CBF) at room temperature is on the order of 7-8 Hz but may be stimulated by irritant exposure. The upregulation of CBF in response to acute irritant exposure is generally considered(More)
It is unknown whether nutritional deficiencies affect the morphology and function of structural cells, such as epithelial cells, and modify the susceptibility to viral infections. We developed an in vitro system of differentiated human bronchial epithelial cells (BEC) grown either under selenium-adequate (Se+) or selenium-deficient (Se-) conditions, to(More)
Epidemiologic evidence suggests that cigarette smoking is a risk factor for infection with influenza, but the mechanisms underlying this susceptibility remain unknown. To ascertain if airway epithelial cells from smokers demonstrate a decreased ability to orchestrate an influenza-induced immune response, we established a model using differentiated nasal(More)
We have previously shown that exposure of respiratory epithelial cells to diesel exhaust (DE) enhances susceptibility to influenza infection and increases the production of interleukin (IL)-6 and interferon (IFN)-beta. The purpose of this study was to confirm and expand upon these in vitro results by assessing the effects of DE exposure on the progression(More)
Smokers are more susceptible to respiratory viral infections, including influenza virus, but the mechanisms mediating this effect are unknown. To determine how epithelial cells contribute to the enhanced susceptibility seen in smokers, we established an in vitro model of differentiated nasal epithelial cells (NECs) from smokers, which showed enhanced mucin(More)