Learn More
Artificial DNA nanostructures show promise for the organization of functional materials to create nanoelectronic or nano-optical devices. DNA origami, in which a long single strand of DNA is folded into a shape using shorter 'staple strands', can display 6-nm-resolution patterns of binding sites, in principle allowing complex arrangements of carbon(More)
The development of nanoscale electronic and photonic devices will require a combination of the high throughput of lithographic patterning and the high resolution and chemical precision afforded by self-assembly. However, the incorporation of nanomaterials with dimensions of less than 10 nm into functional devices has been hindered by the disparity between(More)
  • 1