Learn More
Despite many decades of study, mitotic chromosome structure and composition remain poorly characterized. Here, we have integrated quantitative proteomics with bioinformatic analysis to generate a series of independent classifiers that describe the approximately 4,000 proteins identified in isolated mitotic chromosomes. Integrating these classifiers by(More)
The centromere is a unique chromosomal locus that ensures accurate segregation of chromosomes during cell division. The centromere supports assembly of a multiprotein complex called the kineto-chore, which attaches to spindle micro-tubules. The kinetochore has specialized nucleosomes in which histone H3 is replaced by the centromere-specific H3 variant(More)
DNA replication in eukaryotic cells is tightly regulated to ensure that each origin fires just once. Activation of the replicative DNA helicase (Mcm2–7) during S phase requires the recruitment of Cdc45 and GINS into a CMG complex [1]. In yeast, this step proceeds via the formation of a transient intermediate, the pre-initiation complex. The pre-initiation(More)
In fission yeast, RNAi directs heterochromatin formation at centromeres, telomeres, and the mating type locus. Noncoding RNAs transcribed from repeat elements generate siRNAs that are incorporated into the Argonaute-containing RITS complex and direct it to nascent homologous transcripts. This leads to recruitment of the CLRC complex, including the histone(More)
BACKGROUND Genetic variants in the FTO (fat mass and obesity associated) gene have been associated with an increased risk of obesity. However, the function of its protein product has not been experimentally studied and previously reported sequence similarity analyses suggested the absence of homologs in existing protein databases. Here, we present the first(More)
Mutations in ASPM are the most frequent cause of microcephaly, a disorder characterized by reduced brain size at birth. ASPM is recognized as a major regulator of brain size, yet its role during neural development remains poorly understood. Moreover, the role of ASPM proteins in invertebrate brain morphogenesis has never been investigated. Here, we(More)
When the nucleolus disassembles during open mitosis, many nucleolar proteins and RNAs associate with chromosomes, establishing a perichromosomal compartment coating the chromosome periphery. At present nothing is known about the function of this poorly characterised compartment. In this study, we report that the nucleolar protein Ki-67 is required for the(More)
The SIN3A-HDAC complex deacetylates histones thereby repressing gene transcription. Here we describe family with sequence similarity 60A (FAM60A), a cell cycle-regulated protein that binds to the SIN3-HDAC complex. FAM60A expression peaks during G(1) and S phases of the cell cycle in U2OS cells, in a manner similar to the G(1) regulator cyclin D1, which is(More)
The early development of teleost paired fins is strikingly similar to that of tetrapod limb buds and is controlled by similar mechanisms. One early morphological divergence between pectoral fins and limbs is in the fate of the apical ectodermal ridge (AER), the distal epidermis that rims the bud. Whereas the AER of tetrapods regresses after specification of(More)
BACKGROUND Polycomb group (PcG) proteins are a set of chromatin-modifying proteins that play a key role in epigenetic gene regulation. The PcG proteins form large multiprotein complexes with different activities. The two best-characterized PcG complexes are the PcG repressive complex 1 (PRC1) and 2 (PRC2) that respectively possess histone 2A lysine 119 E3(More)