Luis Rubio-Lago

Learn More
Thermal HCl and HBr molecules were photodissociated using circularly polarized 193 nm light, and the speed-dependent spin polarization of the H-atom photofragments was measured using polarized fluorescence at 121.6 nm. Both polarization components, described by the a(0)(1)(perpendicular) and Re[a(1)(1)(parallel, perpendicular)] parameters which arise from(More)
The photodissociation of acetaldehyde in the molecular channel yielding CO and CH(4) at 248 nm has been studied, probing different rotational states of the CO(nu = 0) fragment by slice ion imaging using a 2+1 REMPI scheme at around 230 nm. From the slice images, clear evidence of the co-existence of two different mechanisms has been obtained. One of the(More)
The photodissociation of acetaldehyde in the radical channel has been studied at wavelengths between 315 and 325 nm using the velocity-map imaging technique. Upon one-photon absorption at 315 nm, the molecule is excited to the first singlet excited state S(1), which, in turn, undergoes intersystem crossing to the first excited triplet state T(1). On the(More)
The photolysis of pyrrole has been studied in a molecular beam at wavelengths of 250, 240, and 193.3 nm, using two different carrier gases, He and Xe. A broad bimodal distribution of H-atom fragment velocities has been observed at all wavelengths. Near threshold at both 240 and 250 nm, sharp features have been observed in the fast part of the H-atom(More)
The roaming dynamics in the photodissociation of acetaldehyde is studied through the first absorption band, in the wavelength interval ranging from 230 nm to 325 nm. Using a combination of the velocity-map imaging technique and rotational resonance enhanced multiphoton ionization (REMPI) spectroscopy of the CO fragment, the branching ratio between the(More)
The photodissociation of methyl iodide at different wavelengths in the red edge of the A-band (286-333 nm) has been studied using a combination of slice imaging and resonance enhanced multiphoton ionization detection of the methyl fragment in the vibrational ground state (nu=0). The kinetic energy distributions (KED) of the produced CH(3)(nu=0) fragments(More)
Chemical reaction dynamics and, particularly, photodissociation in the gas phase are generally studied using pump-probe schemes where a first laser pulse induces the process under study and a second one detects the produced fragments. Providing an efficient detection of ro-vibrationally state-selected photofragments, the resonance enhanced multiphoton(More)
This Letter presents an experimental and theoretical study of femtosecond time-resolved vector correlations in methyl iodide (CH3I) electronic predissociation via the second absorption B-band at 201.2 nm. The time evolution of the phenomenological anisotropy parameters βl was determined from time-resolved photofragment angular distributions obtained by(More)
H(35)Cl(v=0,J=0) molecules in a supersonic expansion were excited to the H(35)Cl(v=2,J=1,M=0) state with linearly polarized laser pulses at about 1.7 microm. These rotationally aligned J=1 molecules were then selectively photodissociated with a linearly polarized laser pulse at 220 nm after a time delay, and the velocity-dependent alignment of the(More)
The photodynamics of phenol-ammonia clusters, PhOH(NH3)(3-5), after one UV photon absorption, has been investigated using velocity map imaging of the NH4(NH3)(2-4) cluster products. The dependence of the NH4(NH3)2 translational energy distributions on the available energy reveals three dynamical regions in close correspondence with the photodissociation of(More)