Luis Montesano

Learn More
Affordances encode relationships between actions, objects, and effects. They play an important role on basic cognitive capabilities such as prediction and planning. We address the problem of learning affordances through the interaction of a robot with the environment, a key step to understand the world properties and develop social skills. We present a(More)
Inverse reinforcement learning addresses the general problem of recovering a reward function from samples of a policy provided by an expert/demonstrator. In this paper, we introduce active learning for inverse reinforcement learning. We propose an algorithm that allows the agent to query the demonstrator for samples at specific states, instead of relying(More)
This paper addresses the scan matching problem for mobile robot displacement estimation. The contribution is a new metric distance and all the tools necessary to be used within the iterative closest point framework. The metric distance is defined in the configuration space of the sensor, and takes into account both translation and rotation error of the(More)
This paper presents a probabilistic scan matching algorithm to estimate the robot planar displacement by matching dense two-dimensional range scans. The general framework follows an iterative process of two steps: (i) computation of correspondences between scans, and (ii) estimation of the relative displacement. The contribution is a probabilistic modelling(More)
We describe a humanoid robot platform--the iCub--which was designed to support collaborative research in cognitive development through autonomous exploration and social interaction. The motivation for this effort is the conviction that significantly greater impact can be leveraged by adopting an open systems policy for software and hardware development.(More)
In this paper we build an imitation learning algorithm for a humanoid robot on top of a general world model provided by learned object affordances. We consider that the robot has previously learned a task independent affordance-based model of its interaction with the world. This model is used to recognize the demonstration by another agent (a human) and(More)
This paper presents a metric-based matching algorithm to estimate the robot planar displacement by matching dense two-dimensional range scans. The contribution is a geometric distance that takes into account the translation and orientation of the sensor at the same time. This result is used in the two steps of the matching - estimation process. The(More)
OBJECTIVE A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user's mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller).(More)
Several works have reported on the reconstruction of 2D/3D limb kinematics from low-frequency EEG signals using linear regression models based on positive correlation values between the recorded and the reconstructed trajectories. This paper describes the mathematical properties of the linear model and the correlation evaluation metric that may lead to a(More)