Learn More
There has been an explosive growth of interest in the multiple interacting paracrine systems that influence renal microvascular function. This review first discusses the membrane activation mechanisms for renal vascular control. Evidence is provided that there are differential activating mechanisms regulating pre- and postglomerular arteriolar vascular(More)
This study was done to establish the correct relationship between protein concentration and plasma colloid osmotic pressure in the dog and to determine the possible influence of the relative albumin and globulin content (A:G ratio). Plasma samples from dogs, rats, and humans were evaluated for total protein concentration, globulin concentration, and colloid(More)
Epoxygenase metabolites of arachidonic acid are produced by the kidney and have been implicated in the control of renal blood flow. This study examined the preglomerular actions of various epoxyeicosatrienoic acids (EET). By use of the in vitro blood-perfused juxtamedullary nephron preparation, interlobular and afferent arteriolar diameter responses to(More)
Angiotensin II (AngII) infusions augment renal angiotensinogen mRNA and protein and urinary angiotensinogen excretion (U(AGT)). Further experiments were performed in 4 groups of rats: normal salt diet with sham operation, NS+Sham, n=6; NS with AngII infusion at 40 ng/min via osmotic minipump, NS+AngII(40), n=9; NS with AngII infusion at 80 ng/min,(More)
Chronic elevations in circulating angiotensin II (AngII) levels produce sustained hypertension and increased intrarenal AngII contents through multiple mechanisms, which may include sustained or increased local production of AngII. This study was designed to test the hypothesis that chronic AngII infusion increases renal angiotensinogen mRNA and protein(More)
Previous reports have suggested that organic calcium antagonists only partially inhibit the renal hemodynamic actions of angiotensin II (ANG II). This study tested the hypothesis that the calcium antagonist-sensitive component of ANG II-induced vasoconstriction is localized at a preglomerular site. Videomicroscopic measurements of vascular dimension were(More)
Renal tissue angiotensin I (Ang I) and II (Ang II) content and angiotensin converting enzyme activity were assessed in both kidneys during initial (7 days) and maintenance (25 days) phases of two-kidney, one clip hypertension in rats. At 7 and 25 days, systolic arterial pressure was 146 +/- 2 and 170 +/- 7 mm Hg, respectively. After 7 days, Ang I content of(More)
Previous studies have demonstrated that augmentation of intrarenal angiotensin II (ANG II) levels during ANG II induced hypertension involves both endogenous formation and accumulation of circulating ANG II. The present work extends these findings and determines whether accumulation of infused ANG II in the kidney requires AT1 receptor activation by using(More)
Previous studies have demonstrated that low-dose angiotensin II (Ang II) infusion for 14 days mimics two-kidney, one clip Goldblatt hypertension and increases intrarenal Ang II levels. The objective of the present study was to determine whether the augmented intrarenal Ang II is due to intrarenal accumulation of the infused Ang II and/or to an increase in(More)
The intrarenal renin-angiotensin system plays a critical role in the paracrine regulation of renal hemodynamics and tubular transport function. Much of the intrarenal angiotensin II (ANG II) is formed locally as evidenced by intrarenal ANG II contents that are much greater than can be explained from the circulating ANG II concentration. Intrarenal ANG II is(More)